Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Tuklasin ang aming Q&A platform upang makahanap ng mapagkakatiwalaang sagot mula sa isang malawak na hanay ng mga eksperto sa iba't ibang larangan. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform.

the scores obtained by 800 students in statistics exam are normally distributed with a mean of 78 and a standard deviation of 7 find the probability value and determine the number of students who obtained a A.) 80 and above B.) 75 and below C.) from 71 to 85​

Sagot :

mags67

Answer:

A.) Probability of scoring 80 and above = 0.3881, Number of students = 310                                                                                                                      B.) Probability of scoring 75 and below = 0.3336, Number of students = 268                                                                                                                  C.) Probability of scoring from 71 to 85 = 0.6826, Number of students = 546

Step-by-step explanation:

Given: Mean (μ) = 78                                                                                     Standard deviation (σ) = 7                                                                               Total number of students = 800

A.) To find the probability of students scoring 80 and above: First, we need to find the Z-score for a score of 80:

Z = X-μ/σ = 80-78/7 = 2/7 = 0.2857

Now, we find the probability using a Z-table: ( > 0.2857) = 1 − ( < 0.2857)

P ( Z > 0.2857) = 1− P(Z<0.2857) (>0.2857) ≈ 1 −0.6119 ≈ 0.3881

To find the number of students who scored 80 and above:

= ∗

= 800 ∗ 0.3881 ≈ 310.48 ≈ 310

B.) To find the probability of students scoring 75 and below: Using the Z-score formula:

Z = X- μ/σ = 75-78/7 = -0.4286

Now, we find the probability using a Z-table:

P ( Z < −0.4286) ≈ 0.3336

To find the number of students who scored 75 and below:

= ∗

= 800 ∗ 0.3336 ≈ 267.68 ≈ 268

C.) To find the probability of students scoring from 71 to 85: We need to find the Z-scores for 71 and 85:

For 71:  Z = 71-78/7 = -1

For 85: Z = 85-78/7 = 1

Now, find the probability of Z being between -1 and 1 using the Z-table:

P ( −1 < Z <1 ) ≈ P ( Z < 1 ) − P ( Z < −1 ) = 0.8413 −0.1587 =0.6826

To find the number of students who scored from 71 to 85:

= ∗

= 800 ∗ 0.6826 ≈ 546.08 ≈ 546