Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform.

Which of the following is the particular solution of:
dydx=2y=6

Select one:
a. y=3−2e−2x

b. y=−3+2e−2x

c. y=−3−2e−2x

d. y=3+2e−2x


Sagot :

The particular solution of dy/dx = 2y + 6 is:

b. y = -3 + 2e^(-2x)

Explanation:

- The given differential equation is dy/dx = 2y + 6.

- To solve this linear first-order differential equation, we can apply the method of integrating factors.

- The integrating factor for this equation is e^(∫2dx) = e^(2x).

- Multiplying the given differential equation by the integrating factor, we get e^(2x)dy/dx - 2ye^(2x) = 6e^(2x).

- This can be rewritten as d(ye^(2x))/dx = 6e^(2x).

- Integrating both sides with respect to x gives ye^(2x) = ∫6e^(2x)dx = 3e^(2x) + C, where C is the constant of integration.

- Solving for y, we get y = 3 + Ce^(-2x).

- To find the particular solution, we use the initial condition that when x = 0, y = -3.

- Plugging in these values, we find that the constant C = -3.

- Thus, the particular solution is y = -3 + 2e^(-2x).

Therefore, the correct answer is option b: y = -3 + 2e^(-2x).