Answered

Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.

find the centroid of the solid generated by revolving the area bounded by y=x^2, y+2x =8, and y=0, rotated by the y axis​

Sagot :

Answer:

1. Determine the intersection points of the curves:

- Solve y = x^2 and y + 2x = 8 simultaneously to find the intersection points.

- Substituting y = x^2 into y + 2x = 8 gives x^2 + 2x = 8.

- Rearrange the equation to x^2 + 2x - 8 = 0 and solve for x to find the x-coordinates of the intersection points.

2. Set up the integral for the centroid:

- The formula for the centroid of a solid of revolution about the y-axis is given by:

\bar{x} = \frac{\int_{a}^{b} x*f(x) dx}{\int_{a}^{b} f(x) dx}

- In this case, f(x) represents the radius of the solid at a distance x from the y-axis.

3. Calculate the centroid:

- Integrate the x-coordinate of the centroid with respect to x over the bounds of the region to find the centroid.

[Due to the complexity of the calculations involved in finding the centroid, it is recommended to use a symbolic math software or calculator to perform the integration and determine the centroid accurately.‼️]

Salamat sa pagbisita sa aming plataporma. Umaasa kaming nahanap mo ang mga sagot na hinahanap mo. Bumalik ka anumang oras na kailangan mo ng karagdagang impormasyon. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Imhr.ca ay nandito para sa iyong mga katanungan. Huwag kalimutang bumalik para sa mga bagong sagot.