Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa mga pang-araw-araw at masalimuot na katanungan. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa iba't ibang larangan sa aming platform.

how do i solve this? answer should be
[tex]2 \sqrt[3]{4} [/tex]
according to the reviewer.

The question is the attached photo.​


How Do I Solve This Answer Should Be Tex2 Sqrt34 Texaccording To The ReviewerThe Question Is The Attached Photo class=

Sagot :

The12

Answer:

The product of [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})[/tex] is [tex]2\sqrt[3]{4}[/tex].

Step-by-step explanation:

  1. Transform the radicand into similar bases.
    [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})=(\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})[/tex]
  2. Change the following from radicals to exponents. Note that when radicals turn into exponents, the radicand's exponent is the numerator, while the index or the nth root is the denominator.
    [tex](\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })[/tex]

    3/6 when simplified is 1/2.
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })[/tex]
  3. By the product law (laws of exponent),  [tex]a^{m}*a^{n} =a^{m+n}[/tex].
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })\\2^{\frac{2}{3}+\frac{1}{2}+\frac{1}{2}}\\ 2^{\frac{2}{3}+1 } \\2^{1\frac{2}{3} } =2^{\frac{5}{3} }[/tex]
  4. You can now transform your answer back into a radical form.
    [tex]2^{\frac{5}{3} } =\sqrt[3]{2^{5} }[/tex]
  5. Simplify
    [tex]\sqrt[3]{2^{5} }\\ \sqrt[3]{32}\\ \sqrt[3]{(8)(4)} \\2\sqrt[3]{4}[/tex]