Tinutulungan ka ng Imhr.ca na makahanap ng maaasahang mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

how do i solve this? answer should be
[tex]2 \sqrt[3]{4} [/tex]
according to the reviewer.

The question is the attached photo.​

How Do I Solve This Answer Should Be Tex2 Sqrt34 Texaccording To The ReviewerThe Question Is The Attached Photo class=

Sagot :

The12

Answer:

The product of [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})[/tex] is [tex]2\sqrt[3]{4}[/tex].

Step-by-step explanation:

  1. Transform the radicand into similar bases.
    [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})=(\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})[/tex]
  2. Change the following from radicals to exponents. Note that when radicals turn into exponents, the radicand's exponent is the numerator, while the index or the nth root is the denominator.
    [tex](\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })[/tex]

    3/6 when simplified is 1/2.
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })[/tex]
  3. By the product law (laws of exponent),  [tex]a^{m}*a^{n} =a^{m+n}[/tex].
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })\\2^{\frac{2}{3}+\frac{1}{2}+\frac{1}{2}}\\ 2^{\frac{2}{3}+1 } \\2^{1\frac{2}{3} } =2^{\frac{5}{3} }[/tex]
  4. You can now transform your answer back into a radical form.
    [tex]2^{\frac{5}{3} } =\sqrt[3]{2^{5} }[/tex]
  5. Simplify
    [tex]\sqrt[3]{2^{5} }\\ \sqrt[3]{32}\\ \sqrt[3]{(8)(4)} \\2\sqrt[3]{4}[/tex]