Makakuha ng mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mabilis at tumpak na Q&A platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.

how do i solve this? answer should be
[tex]2 \sqrt[3]{4} [/tex]
according to the reviewer.

The question is the attached photo.​

How Do I Solve This Answer Should Be Tex2 Sqrt34 Texaccording To The ReviewerThe Question Is The Attached Photo class=

Sagot :

The12

Answer:

The product of [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})[/tex] is [tex]2\sqrt[3]{4}[/tex].

Step-by-step explanation:

  1. Transform the radicand into similar bases.
    [tex](\sqrt[3]{4})(\sqrt{2})(\sqrt[6]{8})=(\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})[/tex]
  2. Change the following from radicals to exponents. Note that when radicals turn into exponents, the radicand's exponent is the numerator, while the index or the nth root is the denominator.
    [tex](\sqrt[3]{2^{2} })(\sqrt{2})(\sqrt[6]{2^{3}})\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })[/tex]

    3/6 when simplified is 1/2.
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{3}{6} })\\(2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })[/tex]
  3. By the product law (laws of exponent),  [tex]a^{m}*a^{n} =a^{m+n}[/tex].
    [tex](2^{\frac{2}{3}})(2^{\frac{1}{2}})(2^{\frac{1}{2} })\\2^{\frac{2}{3}+\frac{1}{2}+\frac{1}{2}}\\ 2^{\frac{2}{3}+1 } \\2^{1\frac{2}{3} } =2^{\frac{5}{3} }[/tex]
  4. You can now transform your answer back into a radical form.
    [tex]2^{\frac{5}{3} } =\sqrt[3]{2^{5} }[/tex]
  5. Simplify
    [tex]\sqrt[3]{2^{5} }\\ \sqrt[3]{32}\\ \sqrt[3]{(8)(4)} \\2\sqrt[3]{4}[/tex]