Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Kumuha ng mga sagot mula sa mga eksperto nang mabilis at eksakto mula sa aming dedikadong komunidad ng mga propesyonal. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.

Find the reciprocal of:​

Find The Reciprocal Of class=

Sagot :

[tex]Sure, let's break down the problem step by step.

First, consider the expression given:

\[

\left( -\frac{8}{11} \right)^{-5} + \left( \left( -\frac{8}{11} \right)^2 \right)^3

\]

Let's simplify each part separately:

1. Simplify \(\left( -\frac{8}{11} \right)^{-5}\):

Using the property of exponents: \(a^{-n} = \frac{1}{a^n}\)

\[

\left( -\frac{8}{11} \right)^{-5} = \frac{1}{\left( -\frac{8}{11} \right)^5}

= \frac{1}{\left( -\frac{8}{11} \right)^5}

= \left( -\frac{11}{8} \right)^5 = - \left( \frac{11}{8} \right)^5

\]

2. Simplify \(\left( \left( -\frac{8}{11} \right)^2 \right)^3\):

Using the property of exponents: \((a^m)^n = a^{mn}\)

\[

\left( \left( -\frac{8}{11} \right)^2 \right)^3 = \left( -\frac{8}{11} \right)^{2 \cdot 3} = \left( -\frac{8}{11} \right)^6

= \left( \frac{8}{11} \right)^6

\]

So now, our expression becomes:

\[

-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6

\]

We need to find the reciprocal of this expression:

\[

\text{Reciprocal of}\left[ -\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6 \right]

= \frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}

\]

So the reciprocal of the given expression is:

\[

\boxed{\frac{1}{-\left( \frac{11}{8} \right)^5 + \left( \frac{8}{11} \right)^6}}

\][/tex]