Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

ACTIVITY 6.3: SPIN THE WHEEL
A spinning wheel is divided into 12 equal sectors and
numbered 1-12. Make a Venn diagram illustrating the events
listed. Then answer the following.
U =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
A = getting an odd number
B
=
getting an even number
C = getting a prime number
1. What is AUB?
2. What is AU C?
3. What is BUC?
4. What is AB?
5. What is An C?
6. What is B OC?
0


Sagot :

Answer:

Let's start by defining the sets:

- \( U \) (Universal set) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}

- \( A \) (Odd numbers) = \{1, 3, 5, 7, 9, 11\}

- \( B \) (Even numbers) = \{2, 4, 6, 8, 10, 12\}

- \( C \) (Prime numbers) = \{2, 3, 5, 7, 11\}

Now, let's create the Venn diagram and answer the questions:

1. **\( A \cup B \) (A union B)**: This set includes all elements that are in \( A \) or \( B \) or both.

- \( A \cup B \) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}

- Since every number in the universal set is either odd or even, \( A \cup B = U \).

2. **\( A \cup C \) (A union C)**: This set includes all elements that are in \( A \) or \( C \) or both.

- \( A \cup C \) = \{1, 3, 5, 7, 9, 11, 2\}

3. **\( B \cup C \) (B union C)**: This set includes all elements that are in \( B \) or \( C \) or both.

- \( B \cup C \) = \{2, 4, 6, 8, 10, 12, 3, 5, 7, 11\}

4. **\( A \cap B \) (A intersection B)**: This set includes all elements that are in both \( A \) and \( B \).

- \( A \cap B \) = \{\} (There are no numbers that are both odd and even)

5. **\( A \cap C \) (A intersection C)**: This set includes all elements that are in both \( A \) and \( C \).

- \( A \cap C \) = \{3, 5, 7, 11\}

6. **\( B \cap C \) (B intersection C)**: This set includes all elements that are in both \( B \) and \( C \).

- \( B \cap C \) = \{2\}

Here's the Venn diagram:

```

_______A_______

/ \

/ {1,3,5,7,9,11} \

/ \

/ \

/ _______C_______ \

/ / {2,3,5,7,11} \ \

/ / \ \

/ / \ \

/ / B \ \

/ / {2,4,6,8,10,12} \ \

/ /__________________________\ \

/______________________________________\

```

From the Venn diagram, you can clearly see the sets and their intersections.

View image sbsnjsksbskssjjsjsjs