Answered

Tuklasin ang mga sagot sa iyong mga katanungan nang madali sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Sumali sa aming Q&A platform at makakuha ng eksaktong sagot sa lahat ng iyong mga tanong mula sa mga propesyonal sa iba't ibang larangan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

hello help me with this tyy​

Hello Help Me With This Tyy class=

Sagot :

[tex] \boxed {\begin{array}{lclcl} \sf {First \: Eigth \: Term : } \\ \\ - 4, - 3, - 2, - 1, \:0,\: 1, \:2, \: \rm {and} \: 3\end{array}}[/tex]

Apply the general formula that has mentioned:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\begin{array}{l} \sf \large{ an} = \frac{ \large n {}^{2} - 25}{ \large n + 5} \end{array}}[/tex]

1. First Term; n = 1

[tex] \sf \small {a_1 } \normalsize= \frac{n {}^{2} - 25}{n + 5} = \frac{1 {}^{2} - 25 }{1 + 5} = \frac{1 - 25}{6} = \frac{ - 24 \: \: }{6} = \small- 4[/tex]

2. Second Term; n = 2

[tex] \sf \small {a_2} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{2 {}^{2} - 25 }{2 + 5} = \frac{4 - 25}{7} = \frac{ - 21 \: \: }{7} = \small- 3[/tex]

3. Third Term; n = 3

[tex] \sf \small {a_3 }= \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{3 {}^{2} - 25 }{3 + 5} = \frac{9 - 25}{8} = \frac{ - 16 \: \: }{8} = \small- 2[/tex]

4. Fourth Term; n = 4

[tex] \sf \small {a_4} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{4 {}^{2} - 25 }{4 + 5} = \frac{16 - 25}{9} = \frac{ - 9 \: \: }{9} = \small-1[/tex]

5. Fifth Term; n = 5

[tex] \sf \small {a_5} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{5 {}^{2} - 25 }{5 + 5} = \frac{25 - 25}{10} = \frac{ 0 }{9} = \small0[/tex]

6. Sixth Term; n = 6

[tex] \sf \small {a_6} = \normalsize\frac{n {}^{2} - 25}{n + 5} = \frac{6 {}^{2} - 25 }{6 + 5} = \frac{36 - 25}{11} = \frac{ 11 }{11} = \small1[/tex]

7. Seventh Term; n = 7

[tex] \sf \small{ a_7 }= \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{7 {}^{2} - 25 }{7 + 5} = \frac{49 - 25}{12} = \frac{ 24}{12} = \small2[/tex]

8. Eigth Term; n = 8

[tex] \sf \small {a_8} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{8 {}^{2} - 25 }{8+ 5} = \frac{64 - 25}{13} = \frac{ 39}{13} = \small3[/tex]