lanchui
Answered

Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa mga pang-araw-araw at masalimuot na katanungan. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.

Find the sum of all positive 2-digit integer that are divisible by each of their digits.

Sagot :

AnneC
First, we need to find all numbers that satisfy the condition.
Represent each 2-digit number by  10x+y      (x is the tens digit, y is the units digit)

Condition: the number is divisible by each of its digits.

Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]  
 
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)

Let [tex]\frac{y}{x}=p[/tex]     (b)


Divisible by y: 
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex] 

[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.

But [tex]\frac{10x}{y}=\frac{10}{p}[/tex]  ,
So p should be a positive integer  [from (a)]  such that [tex]\frac{10}{p}[/tex] is a positive integer.

The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].

List of numbers when
p=1    {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2    {12, 24, 36, 48}
p=5    {15}

These are all the 2-digit positive integers that satisfy the condition.

The sum of all those numbers is 630.
Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa karagdagang impormasyon at mga sagot sa iba pang mga tanong na mayroon ka. Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Ang iyong mga tanong ay mahalaga sa amin. Balik-balikan ang Imhr.ca para sa higit pang mga sagot.