Makakuha ng mabilis at tumpak na mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinakamahusay na Q&A platform. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.
Sagot :
First, we need to find all numbers that satisfy the condition.
Represent each 2-digit number by 10x+y (x is the tens digit, y is the units digit)
Condition: the number is divisible by each of its digits.
Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)
Let [tex]\frac{y}{x}=p[/tex] (b)
Divisible by y:
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex]
[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.
But [tex]\frac{10x}{y}=\frac{10}{p}[/tex] ,
So p should be a positive integer [from (a)] such that [tex]\frac{10}{p}[/tex] is a positive integer.
The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].
List of numbers when
p=1 {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2 {12, 24, 36, 48}
p=5 {15}
These are all the 2-digit positive integers that satisfy the condition.
The sum of all those numbers is 630.
Represent each 2-digit number by 10x+y (x is the tens digit, y is the units digit)
Condition: the number is divisible by each of its digits.
Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)
Let [tex]\frac{y}{x}=p[/tex] (b)
Divisible by y:
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex]
[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.
But [tex]\frac{10x}{y}=\frac{10}{p}[/tex] ,
So p should be a positive integer [from (a)] such that [tex]\frac{10}{p}[/tex] is a positive integer.
The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].
List of numbers when
p=1 {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2 {12, 24, 36, 48}
p=5 {15}
These are all the 2-digit positive integers that satisfy the condition.
The sum of all those numbers is 630.
Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa higit pang tumpak na mga sagot at napapanahong impormasyon. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Nagagalak kaming sagutin ang iyong mga tanong. Bumalik sa Imhr.ca para sa higit pang mga sagot.