lanchui
Answered

Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa aming komprehensibong Q&A platform. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay.

Find the sum of all positive 2-digit integer that are divisible by each of their digits.

Sagot :

AnneC
First, we need to find all numbers that satisfy the condition.
Represent each 2-digit number by  10x+y      (x is the tens digit, y is the units digit)

Condition: the number is divisible by each of its digits.

Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]  
 
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)

Let [tex]\frac{y}{x}=p[/tex]     (b)


Divisible by y: 
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex] 

[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.

But [tex]\frac{10x}{y}=\frac{10}{p}[/tex]  ,
So p should be a positive integer  [from (a)]  such that [tex]\frac{10}{p}[/tex] is a positive integer.

The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].

List of numbers when
p=1    {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2    {12, 24, 36, 48}
p=5    {15}

These are all the 2-digit positive integers that satisfy the condition.

The sum of all those numbers is 630.
Umaasa kami na nakatulong ang impormasyong ito. Huwag mag-atubiling bumalik anumang oras para sa higit pang mga sagot sa iyong mga tanong at alalahanin. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Mahalaga ang iyong kaalaman. Bumalik sa Imhr.ca para sa higit pang mga sagot at impormasyon.