Answered

Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Tuklasin ang mga sagot na kailangan mo mula sa isang komunidad ng mga eksperto na handang tumulong sa kanilang kaalaman at karanasan. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

Sum of a geometric sequence

Find the sum:
A geometric sequence has first 3 terms and last term 48. If each term is twice the previous term, find the number of terms and the sum of the geometric sequence

Sagot :

There are a total of 4 terms. Since each term is twice the previous term, let 1st term=( a), 2nd term= (a*2), 3rd term=(a*2^2), then last term =( a*2^3). Stated that the last term is equal to 48, you can get an equation [48=(a*2^3)] to find a. The answer is a=6. We substitute it to the equation of terms above to find the numbers. .........The numbers would be 6,12,24 and 48.........Next,the formula for the sum would be "Sn=(a(1-r^n)/(1-r)" since the common ratio ( r )=2 and the first term ( a ) =6, we substitute it to the formula then we will get the sum (Sn)=90