Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Itanong ang iyong mga katanungan at makakuha ng eksaktong sagot mula sa mga propesyonal na may malawak na karanasan sa iba't ibang larangan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal.
Sagot :
[tex]1.)\\\\ f(x)= x^2+6x-4 \\ \\x^2+6x-4=0\\\\a=1, \ \ b=6, \ \ c=-4[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-6-\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{-6-\sqrt{36+16 }}{2 }=\\\\=\frac{-6-\sqrt{52 }}{2 } =\frac{-6-\sqrt{4\cdot 13 }}{2 }=\frac{-6-2\sqrt{ 13 }}{2 }=\frac{2(-3- \sqrt{ 13 })}{2 }=-3- \sqrt{ 13 }\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-6+\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{2(-3+\sqrt{ 13 })}{2 }=-3+ \sqrt{ 13 }[/tex]
[tex]2.)\\\\ x^2-676 =0 \\ \\(x-26)(x+26)=0\\\\x-26=0 \ \ or \ \ x+26 =0 \\\\x=26 \ \ or \ \ x=-26[/tex]
[tex]3.) 9x^2-30=6 \\\\9x^2-30-6=0\\\\ 9x^2-36=0\\\\(3x-6)(3x+6)=0\\\\3x-6=0\ \ \ or \ \ \ 3x+6=0[/tex]
[tex]3x=6 \ \ \ or \ \ \ 3x=-6\ \ / | \ divide \ both \ sides\ by\ 3 \\\\x=2 \ \ \ or \ \ \ x=-2[/tex]
[tex]4.)\\\\ x^2+8x+7=0\\\\ x^2+x+7x+7=0\\\\x(x +1)+7( x+1)=0\\\\(x+1)(x+7)=0[/tex]
[tex]x+1=0 \ \ \ or \ \ \ x+7 =0 \\\\x=-1 \ \ \ or \ \ \ x=-7[/tex]
[tex]5. )x^2+4x-3=0\\\\ a=1, \ \ \ b=4, \ \ \ c=-3[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-4-\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }=\frac{-4-\sqrt{16+12 }}{2 }=\\\\=\frac{-4-\sqrt{28 }}{2 }=\frac{-4-\sqrt{4\cdot 7 }}{2 }=\frac{-4-2\sqrt{7 }}{2 } =\frac{2(-2- \sqrt{7 })}{2 }=-2-\sqrt{7}\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }= \frac{2(-2+ \sqrt{7 })}{2 }=-2+\sqrt{7}[/tex]
[tex]6. )\\\\ x^2+2x-1=0 \\ \\a=1, \ \ \ \b=2, \ \ \ c=-1\\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-2-\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }=\frac{-2-\sqrt{4+ 4 }}{2 }= \frac{-2-\sqrt{8 }}{2 }= \\\\= \frac{-2-\sqrt{4\cdot 2 }}{2 } =\frac{-2-2\sqrt{ 2 }}{2 }=\frac{2(-1- \sqrt{ 2 })}{2 } =-1- \sqrt{ 2 }[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }= \frac{2(-1+ \sqrt{ 2 })}{2 } =-1+\sqrt{ 2 }[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-6-\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{-6-\sqrt{36+16 }}{2 }=\\\\=\frac{-6-\sqrt{52 }}{2 } =\frac{-6-\sqrt{4\cdot 13 }}{2 }=\frac{-6-2\sqrt{ 13 }}{2 }=\frac{2(-3- \sqrt{ 13 })}{2 }=-3- \sqrt{ 13 }\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-6+\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{2(-3+\sqrt{ 13 })}{2 }=-3+ \sqrt{ 13 }[/tex]
[tex]2.)\\\\ x^2-676 =0 \\ \\(x-26)(x+26)=0\\\\x-26=0 \ \ or \ \ x+26 =0 \\\\x=26 \ \ or \ \ x=-26[/tex]
[tex]3.) 9x^2-30=6 \\\\9x^2-30-6=0\\\\ 9x^2-36=0\\\\(3x-6)(3x+6)=0\\\\3x-6=0\ \ \ or \ \ \ 3x+6=0[/tex]
[tex]3x=6 \ \ \ or \ \ \ 3x=-6\ \ / | \ divide \ both \ sides\ by\ 3 \\\\x=2 \ \ \ or \ \ \ x=-2[/tex]
[tex]4.)\\\\ x^2+8x+7=0\\\\ x^2+x+7x+7=0\\\\x(x +1)+7( x+1)=0\\\\(x+1)(x+7)=0[/tex]
[tex]x+1=0 \ \ \ or \ \ \ x+7 =0 \\\\x=-1 \ \ \ or \ \ \ x=-7[/tex]
[tex]5. )x^2+4x-3=0\\\\ a=1, \ \ \ b=4, \ \ \ c=-3[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-4-\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }=\frac{-4-\sqrt{16+12 }}{2 }=\\\\=\frac{-4-\sqrt{28 }}{2 }=\frac{-4-\sqrt{4\cdot 7 }}{2 }=\frac{-4-2\sqrt{7 }}{2 } =\frac{2(-2- \sqrt{7 })}{2 }=-2-\sqrt{7}\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }= \frac{2(-2+ \sqrt{7 })}{2 }=-2+\sqrt{7}[/tex]
[tex]6. )\\\\ x^2+2x-1=0 \\ \\a=1, \ \ \ \b=2, \ \ \ c=-1\\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-2-\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }=\frac{-2-\sqrt{4+ 4 }}{2 }= \frac{-2-\sqrt{8 }}{2 }= \\\\= \frac{-2-\sqrt{4\cdot 2 }}{2 } =\frac{-2-2\sqrt{ 2 }}{2 }=\frac{2(-1- \sqrt{ 2 })}{2 } =-1- \sqrt{ 2 }[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }= \frac{2(-1+ \sqrt{ 2 })}{2 } =-1+\sqrt{ 2 }[/tex]
Bisitahin muli kami para sa mga pinakabagong at maaasahang mga sagot. Lagi kaming handang tulungan ka sa iyong mga pangangailangan sa impormasyon. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Imhr.ca, ang iyong pinagkakatiwalaang site para sa mga sagot. Huwag kalimutang bumalik para sa higit pang impormasyon.