Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang libu-libong tanong at sagot mula sa isang komunidad ng mga eksperto na handang tumulong sa iyo. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.
Sagot :
[tex]1.)\\\\ f(x)= x^2+6x-4 \\ \\x^2+6x-4=0\\\\a=1, \ \ b=6, \ \ c=-4[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-6-\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{-6-\sqrt{36+16 }}{2 }=\\\\=\frac{-6-\sqrt{52 }}{2 } =\frac{-6-\sqrt{4\cdot 13 }}{2 }=\frac{-6-2\sqrt{ 13 }}{2 }=\frac{2(-3- \sqrt{ 13 })}{2 }=-3- \sqrt{ 13 }\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-6+\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{2(-3+\sqrt{ 13 })}{2 }=-3+ \sqrt{ 13 }[/tex]
[tex]2.)\\\\ x^2-676 =0 \\ \\(x-26)(x+26)=0\\\\x-26=0 \ \ or \ \ x+26 =0 \\\\x=26 \ \ or \ \ x=-26[/tex]
[tex]3.) 9x^2-30=6 \\\\9x^2-30-6=0\\\\ 9x^2-36=0\\\\(3x-6)(3x+6)=0\\\\3x-6=0\ \ \ or \ \ \ 3x+6=0[/tex]
[tex]3x=6 \ \ \ or \ \ \ 3x=-6\ \ / | \ divide \ both \ sides\ by\ 3 \\\\x=2 \ \ \ or \ \ \ x=-2[/tex]
[tex]4.)\\\\ x^2+8x+7=0\\\\ x^2+x+7x+7=0\\\\x(x +1)+7( x+1)=0\\\\(x+1)(x+7)=0[/tex]
[tex]x+1=0 \ \ \ or \ \ \ x+7 =0 \\\\x=-1 \ \ \ or \ \ \ x=-7[/tex]
[tex]5. )x^2+4x-3=0\\\\ a=1, \ \ \ b=4, \ \ \ c=-3[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-4-\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }=\frac{-4-\sqrt{16+12 }}{2 }=\\\\=\frac{-4-\sqrt{28 }}{2 }=\frac{-4-\sqrt{4\cdot 7 }}{2 }=\frac{-4-2\sqrt{7 }}{2 } =\frac{2(-2- \sqrt{7 })}{2 }=-2-\sqrt{7}\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }= \frac{2(-2+ \sqrt{7 })}{2 }=-2+\sqrt{7}[/tex]
[tex]6. )\\\\ x^2+2x-1=0 \\ \\a=1, \ \ \ \b=2, \ \ \ c=-1\\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-2-\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }=\frac{-2-\sqrt{4+ 4 }}{2 }= \frac{-2-\sqrt{8 }}{2 }= \\\\= \frac{-2-\sqrt{4\cdot 2 }}{2 } =\frac{-2-2\sqrt{ 2 }}{2 }=\frac{2(-1- \sqrt{ 2 })}{2 } =-1- \sqrt{ 2 }[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }= \frac{2(-1+ \sqrt{ 2 })}{2 } =-1+\sqrt{ 2 }[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-6-\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{-6-\sqrt{36+16 }}{2 }=\\\\=\frac{-6-\sqrt{52 }}{2 } =\frac{-6-\sqrt{4\cdot 13 }}{2 }=\frac{-6-2\sqrt{ 13 }}{2 }=\frac{2(-3- \sqrt{ 13 })}{2 }=-3- \sqrt{ 13 }\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-6+\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{2(-3+\sqrt{ 13 })}{2 }=-3+ \sqrt{ 13 }[/tex]
[tex]2.)\\\\ x^2-676 =0 \\ \\(x-26)(x+26)=0\\\\x-26=0 \ \ or \ \ x+26 =0 \\\\x=26 \ \ or \ \ x=-26[/tex]
[tex]3.) 9x^2-30=6 \\\\9x^2-30-6=0\\\\ 9x^2-36=0\\\\(3x-6)(3x+6)=0\\\\3x-6=0\ \ \ or \ \ \ 3x+6=0[/tex]
[tex]3x=6 \ \ \ or \ \ \ 3x=-6\ \ / | \ divide \ both \ sides\ by\ 3 \\\\x=2 \ \ \ or \ \ \ x=-2[/tex]
[tex]4.)\\\\ x^2+8x+7=0\\\\ x^2+x+7x+7=0\\\\x(x +1)+7( x+1)=0\\\\(x+1)(x+7)=0[/tex]
[tex]x+1=0 \ \ \ or \ \ \ x+7 =0 \\\\x=-1 \ \ \ or \ \ \ x=-7[/tex]
[tex]5. )x^2+4x-3=0\\\\ a=1, \ \ \ b=4, \ \ \ c=-3[/tex]
[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-4-\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }=\frac{-4-\sqrt{16+12 }}{2 }=\\\\=\frac{-4-\sqrt{28 }}{2 }=\frac{-4-\sqrt{4\cdot 7 }}{2 }=\frac{-4-2\sqrt{7 }}{2 } =\frac{2(-2- \sqrt{7 })}{2 }=-2-\sqrt{7}\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }= \frac{2(-2+ \sqrt{7 })}{2 }=-2+\sqrt{7}[/tex]
[tex]6. )\\\\ x^2+2x-1=0 \\ \\a=1, \ \ \ \b=2, \ \ \ c=-1\\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-2-\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }=\frac{-2-\sqrt{4+ 4 }}{2 }= \frac{-2-\sqrt{8 }}{2 }= \\\\= \frac{-2-\sqrt{4\cdot 2 }}{2 } =\frac{-2-2\sqrt{ 2 }}{2 }=\frac{2(-1- \sqrt{ 2 })}{2 } =-1- \sqrt{ 2 }[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }= \frac{2(-1+ \sqrt{ 2 })}{2 } =-1+\sqrt{ 2 }[/tex]
Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Maraming salamat sa pagbisita sa Imhr.ca. Bumalik muli para sa higit pang kapaki-pakinabang na impormasyon at sagot mula sa aming mga eksperto.