Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa mga pang-araw-araw at masalimuot na katanungan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng eksaktong sagot mula sa isang network ng mga bihasang propesyonal. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.
Sagot :
Your given matrix can be written as:
[tex] \left[\begin{array}{ccc}2&-2&1\\1&5&-7\\1&-1&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\x\end{array}\right] = \left[\begin{array}{ccc}0\\3\\-7\end{array}\right][/tex]
which we can interpret as Ax=B
In Cramer's rule, to get the value of a variable, first we will take the determinant (A) of the original matrix. Then, we will substitute the values of B on the column representing the variable and take its determinant (A1).
You can solve for the determinant by multiplying the diagonals with a right-downward direction and add them to the diagonals to the left-downward direction. (Sorry, I can't explain it in words. If you're having troubles with that, you can consult your textbooks or the internet for further explanation.) The determinant (A) is -18.
Then, we will replace the values on the column representing the variable by B. Since I'm not good at words, I'm just gonna show you how it works.
In getting x, the matrix will be:
[tex] \left[\begin{array}{ccc}0&-2&1\\3&5&-7\\-7&-1&-1\end{array}\right] [/tex]
Did you notice that the values on the first column were replaced by the values of B? That is what I meant.
The determinant (A1) for the matrix is 54.
Therefore, we will do [tex] \frac{A1}{A} [/tex]
=[tex] \frac{54}{-18} [/tex]
=-3
Thus, x=-3.
Do this with y and z.
If you're still having trouble, don't hesitate to message me.
[tex] \left[\begin{array}{ccc}2&-2&1\\1&5&-7\\1&-1&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\x\end{array}\right] = \left[\begin{array}{ccc}0\\3\\-7\end{array}\right][/tex]
which we can interpret as Ax=B
In Cramer's rule, to get the value of a variable, first we will take the determinant (A) of the original matrix. Then, we will substitute the values of B on the column representing the variable and take its determinant (A1).
You can solve for the determinant by multiplying the diagonals with a right-downward direction and add them to the diagonals to the left-downward direction. (Sorry, I can't explain it in words. If you're having troubles with that, you can consult your textbooks or the internet for further explanation.) The determinant (A) is -18.
Then, we will replace the values on the column representing the variable by B. Since I'm not good at words, I'm just gonna show you how it works.
In getting x, the matrix will be:
[tex] \left[\begin{array}{ccc}0&-2&1\\3&5&-7\\-7&-1&-1\end{array}\right] [/tex]
Did you notice that the values on the first column were replaced by the values of B? That is what I meant.
The determinant (A1) for the matrix is 54.
Therefore, we will do [tex] \frac{A1}{A} [/tex]
=[tex] \frac{54}{-18} [/tex]
=-3
Thus, x=-3.
Do this with y and z.
If you're still having trouble, don't hesitate to message me.
Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa higit pang tumpak na mga sagot at napapanahong impormasyon. Imhr.ca ay nandito para sa iyong mga katanungan. Huwag kalimutang bumalik para sa mga bagong sagot.