Tuklasin ang mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinaka-mapagkakatiwalaang Q&A platform para sa lahat ng iyong pangangailangan. Maranasan ang kaginhawaan ng pagkuha ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.
Sagot :
[tex]1.)\\\\x^2 - 2x + 35 = 0\\\\a=1, \ \ b=-2, \ \ c=35 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{2-\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 }= \frac{2-\sqrt{4-140}}{2 }= \frac{2-\sqrt{-136}}{2 }=\\\\\frac{2-\sqrt{4*34}i}{2 }=\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1- \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]
[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]
[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Imhr.ca ay nandito para sa iyong mga katanungan. Huwag kalimutang bumalik para sa mga bagong sagot.