Tinutulungan ka ng Imhr.ca na makahanap ng maaasahang mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Tuklasin ang detalyadong mga solusyon sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform. Maranasan ang kaginhawaan ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming platform.
Sagot :
The equation of the circle is given by:
[tex]4 x^{2} +4 y^{2} -7x+6y-35=0 [/tex]
We could transform this to its general form [tex](x-h)^2+(y-k)^2=r^2[/tex] by manipulating the equation. (Mostly by completing a square.)
Rearranging the equation to easily see like terms, we get:
[tex]4x^2 -7x +4y^2 +6y -35=0[/tex]
Using the techniques of completing the square, we will have:
[tex](4x^2-7x+ \frac{49}{16}) - \frac{49}{16} +(4y^2+6y+\frac{3}{2}) -\frac{3}{2} -35=0[/tex]
Rearranging:
[tex](4x^2-7x+ \frac{49}{16})+(4y^2+6y+ \frac{9}{4}) = \frac{49}{16} + \frac{9}{4}+35[/tex]
Combining:
[tex](2x+ \frac{7}{4})^2 +(2x+ \frac{3}{2})^2= (\frac{ \sqrt{645} }{4} )^2[/tex]
Now, since we have the general equation and we know the value of r, which is [tex] \frac{ \sqrt{645} }{4} [/tex], we use the formula of getting the area of a circle in terms of r.
Area= πr^2
Therefore the area is:
[tex]\frac{645 \pi }{16} [/tex]
Hope that helps.
If you still have any problems and/or if there are any errors in this answer please post a comment on my profile or message me. Thanks!
[tex]4 x^{2} +4 y^{2} -7x+6y-35=0 [/tex]
We could transform this to its general form [tex](x-h)^2+(y-k)^2=r^2[/tex] by manipulating the equation. (Mostly by completing a square.)
Rearranging the equation to easily see like terms, we get:
[tex]4x^2 -7x +4y^2 +6y -35=0[/tex]
Using the techniques of completing the square, we will have:
[tex](4x^2-7x+ \frac{49}{16}) - \frac{49}{16} +(4y^2+6y+\frac{3}{2}) -\frac{3}{2} -35=0[/tex]
Rearranging:
[tex](4x^2-7x+ \frac{49}{16})+(4y^2+6y+ \frac{9}{4}) = \frac{49}{16} + \frac{9}{4}+35[/tex]
Combining:
[tex](2x+ \frac{7}{4})^2 +(2x+ \frac{3}{2})^2= (\frac{ \sqrt{645} }{4} )^2[/tex]
Now, since we have the general equation and we know the value of r, which is [tex] \frac{ \sqrt{645} }{4} [/tex], we use the formula of getting the area of a circle in terms of r.
Area= πr^2
Therefore the area is:
[tex]\frac{645 \pi }{16} [/tex]
Hope that helps.
If you still have any problems and/or if there are any errors in this answer please post a comment on my profile or message me. Thanks!
Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa karagdagang impormasyon at mga sagot sa iba pang mga tanong na mayroon ka. Mahalaga ang iyong kaalaman. Bumalik sa Imhr.ca para sa higit pang mga sagot at impormasyon.