Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.
Sagot :
The equation of the circle is given by:
[tex]4 x^{2} +4 y^{2} -7x+6y-35=0 [/tex]
We could transform this to its general form [tex](x-h)^2+(y-k)^2=r^2[/tex] by manipulating the equation. (Mostly by completing a square.)
Rearranging the equation to easily see like terms, we get:
[tex]4x^2 -7x +4y^2 +6y -35=0[/tex]
Using the techniques of completing the square, we will have:
[tex](4x^2-7x+ \frac{49}{16}) - \frac{49}{16} +(4y^2+6y+\frac{3}{2}) -\frac{3}{2} -35=0[/tex]
Rearranging:
[tex](4x^2-7x+ \frac{49}{16})+(4y^2+6y+ \frac{9}{4}) = \frac{49}{16} + \frac{9}{4}+35[/tex]
Combining:
[tex](2x+ \frac{7}{4})^2 +(2x+ \frac{3}{2})^2= (\frac{ \sqrt{645} }{4} )^2[/tex]
Now, since we have the general equation and we know the value of r, which is [tex] \frac{ \sqrt{645} }{4} [/tex], we use the formula of getting the area of a circle in terms of r.
Area= πr^2
Therefore the area is:
[tex]\frac{645 \pi }{16} [/tex]
Hope that helps.
If you still have any problems and/or if there are any errors in this answer please post a comment on my profile or message me. Thanks!
[tex]4 x^{2} +4 y^{2} -7x+6y-35=0 [/tex]
We could transform this to its general form [tex](x-h)^2+(y-k)^2=r^2[/tex] by manipulating the equation. (Mostly by completing a square.)
Rearranging the equation to easily see like terms, we get:
[tex]4x^2 -7x +4y^2 +6y -35=0[/tex]
Using the techniques of completing the square, we will have:
[tex](4x^2-7x+ \frac{49}{16}) - \frac{49}{16} +(4y^2+6y+\frac{3}{2}) -\frac{3}{2} -35=0[/tex]
Rearranging:
[tex](4x^2-7x+ \frac{49}{16})+(4y^2+6y+ \frac{9}{4}) = \frac{49}{16} + \frac{9}{4}+35[/tex]
Combining:
[tex](2x+ \frac{7}{4})^2 +(2x+ \frac{3}{2})^2= (\frac{ \sqrt{645} }{4} )^2[/tex]
Now, since we have the general equation and we know the value of r, which is [tex] \frac{ \sqrt{645} }{4} [/tex], we use the formula of getting the area of a circle in terms of r.
Area= πr^2
Therefore the area is:
[tex]\frac{645 \pi }{16} [/tex]
Hope that helps.
If you still have any problems and/or if there are any errors in this answer please post a comment on my profile or message me. Thanks!
Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Nagagalak kaming sagutin ang iyong mga tanong. Bumalik sa Imhr.ca para sa higit pang mga sagot.