Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Maranasan ang kadalian ng pagkuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa mga propesyonal sa aming platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

2x + 5y = 4/5

6x - 5y = 5/6

solve each system of linear equation by the substitute method

Sagot :

riza1
[tex]\begin{cases}2x+5y=\frac{4}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} 5y=-2x+\frac{4}{5} \ \ / *\frac{1}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} y=-\frac{2}{5}x+4 \\ 6x-5y=\frac{5}{6} \end{cases}[/tex]

[tex]substitution : \\\\ 6x-5 *(-\frac{2}{5}x+\frac{4}{25})=\frac{5}{6}\\\\6x+2x- \frac{4}{5}=\frac{5}{6} \\\\8x=\frac{5}{6} +\frac{4}{5}\\\\8x=\frac{25}{30}+\frac{24}{30}[/tex]

[tex]8x=\frac{49}{30} \ \ /*\frac{1}{8}\\\\x=\frac{49}{240}\\\\\\2*\frac{49}{240}+5y=\frac{4}{5}\\\\\frac{49}{120}+5y=\frac{4}{5}[/tex]

 [tex]5y=\frac{4}{5}-\frac{49}{120} \\\\5y=\frac{96}{120}-\frac{49}{120} \\\\5y=\frac{47}{120}\ \ /*\frac{1}{5}\\\\y=\frac{47}{600} \\\\Answer : \ \begin{cases} x= \frac{49}{240}\\ y=\frac{47}{600} \end{cases}[/tex]


2x + 5y = 4/5 ---- equation 1
6x - 5y =5/6  ----equation 2
since you are to use substitution method then first thing to do is to have one equation be modified such that one variable could have a value in terms of the other..
Let's have equation 1
2x + 5y = 4/5
2x = 4/5 - 5y
[tex]x = ( \frac{4}{5} - 5y)( \frac{1}{2}) [/tex]
[tex]x = (\frac{4}{5} )( \frac{1}{2} ) - \frac{5y}{2} [/tex]
[tex]x = \frac{2}{5} - \frac{5y}{2} [/tex]
substituting this to equation 2 you'll have:
6x - 5y = 5/6
[tex]6( \frac{2}{5} - \frac{5y}{2}) - 5y = \frac{5}{6} [/tex]
[tex]6( \frac{2}{5}) - \frac{6(5y)}{2} - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - 15y - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - \frac{5}{6} = 15y + 5y [/tex]
[tex]20y = \frac{12}{5} - \frac{5}{6} [/tex]
[tex]20y = \frac{12(6)-5(5)}{30} [/tex]
[tex]20y = \frac{71-25}{30} [/tex]
[tex]20y = \frac{47}{30} [/tex]
[tex]y = \frac{47}{30(20)} [/tex]
[tex]y = \frac{47}{600} [/tex]
substituting the value for y to equation 1
2x + 5y = 4/5
2x + 5(47/600) = 4/5
[tex]2x = \frac{4}{5} - \frac{5(47)}{600} [/tex]
[tex]2x = \frac{4}{5} - \frac{47}{120} [/tex]
[tex]2x = \frac{49}{120} [/tex]
[tex]x = \frac{49}{240} [/tex]