Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto nang mabilis at tumpak. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto na dedikado sa pagbibigay ng tamang impormasyon. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

Gold-198 has a half-life of approximately 3 days. If a 100 g sample of gold-198 decays for 9 days, approximately how much gold-198 remains in the sample?

Sagot :

The remaining gold-198 in the sample is 12.5 grams

Further explanation

The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.

Usually radioactive elements have an unstable atomic nucleus.

The main particles are emitted by radioactive elements ,so that they generally decay, are alpha (α), beta (β) and gamma (γ) particles

General formulas used in decay:

[tex]\large {\boxed {\bold {N_t = N_0 (\dfrac {1} {2}) ^ {T/t\frac {1} {2}}}}[/tex]

T = duration of decay

t 1/2 = half-life

N₀ = the number of initial radioactive atoms

Nt = the number of radioactive atoms left after decaying during T time

The half-life can be expressed in a decay constant (λ)

[tex]\displaystyle t_ {1/2} = {\dfrac {\ln (2)} {\lambda}}[/tex]

The half-life of Gold-198 is 3 days

Initial sample amount: 100 g

duration of decay = 9 days

Then the remaining gold-198 in the sample is

[tex]\rm \large {\boxed {\bold {N_t = 100 (\dfrac {1} {2}) ^ {\frac{9}{3} }}}}\\\\N_t=\dfrac{100}{2^3}\\\\N_t=\dfrac{100}{8}\\\\N_t=\boxed{\bold{12.5~grams}}[/tex]

Learn more

examples of decay and non decay

https://brainly.ph/question/695292

https://brainly.ph/question/1498727

the exponential growth

https://brainly.ph/question/1603333

#LetsStudy