Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.
Sagot :
Answer:
The time to take the marble to reach the floor is 0.553 s and its initial speed is 5.422 m/s.
Explanation:
Free falling body is the motion of a falling object under the influence of the Earth's gravity. Its motion is independent of its weight. The constant acceleration of a free falling body is called acceleration due to gravity, denoted by [tex]g[/tex] which is approximate to 9.8 m/[tex]s^{2}[/tex].
For the formula to be used in the problem, we use:
[tex]V_{1} ^{2}=V_{0} ^{2} +2gy[/tex] equation 1
[tex]y=V_{0} t+\frac{1}{2} gt^{2}[/tex] equation 2
where
[tex]V_{1}[/tex] is the final velocity, unit is in m/s
[tex]V_{0}[/tex] is the initial velocity, unit is in m/s
[tex]t[/tex] is the time, unit is in seconds (s)
[tex]y[/tex] is the vertical distance, unit is in meters (m)
[tex]g[/tex] is the acceleration due to gravity, [tex]9.8 m/s^{2}[/tex]
For the given information
[tex]y=1.50m[/tex] height of the table
[tex]x=2.0m[/tex] distance of the marble from the base of the table (when the
marble strikes the floor)
Solving the problem
1. To solve for the initial velocity, use equation 1 then substitute the given information.
[tex]V_{1} ^{2}=V_{0} ^{2} +2gy[/tex]
[tex]0=V_{0} ^{2} +2(-9.8m/s^{2} )(1.5m)[/tex] [tex]g[/tex] is negative since the acceleration is
downward
[tex]V_{0} =\sqrt{(2(9.8)(1.5)}[/tex]
[tex]V_{0} =5.422m/s[/tex]
2. To solve for the time, use equation 2 then substitute the value of
[tex]V_{0} =5.422 m/s[/tex] and the given, we get:
[tex]y=V_{0} t+\frac{1}{2} gt^{2}[/tex]
[tex]1.50m=(5.422m/s)t+\frac{1}{2} (9.8)t^{2}[/tex]
Simplifying and arranging the equation
[tex]4.9t^{2} +5.422t-1.50=0[/tex]
Solving for [tex]t[/tex] using quadratic equation, [tex]x=\frac{-b+\sqrt{b^{2}-4ac } }{2a}[/tex], we get:
[tex]t=\frac{-5.422+\sqrt{5.422^{2+4(4.9)(1.50)} } }{2(4.9)}[/tex]
[tex]t=0.553sec[/tex]
For more information related to free falling body, just click on the following links:
* Recommendations about a free falling body
https://brainly.ph/question/2162209
* Additional example
https://brainly.ph/question/2170448
#LetsStudy
Salamat sa pagtitiwala sa amin sa iyong mga katanungan. Narito kami upang tulungan kang makahanap ng tumpak na mga sagot nang mabilis at mahusay. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Laging bisitahin ang Imhr.ca para sa mga bago at kapani-paniwalang sagot mula sa aming mga eksperto.