Answered

Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Tuklasin ang mga komprehensibong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming madaling gamitin na platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

what is the derivative of y=ln(cosh2x) :)

Sagot :

[tex]\large \bold {SOLUTION}[/tex]

[tex]\large\sf{y = ln( \cosh(2x) ) }[/tex]

[tex]\small\textsf{By the Chain Rule of differentiation, let u = cosh (2x)}[/tex]

[tex]\small\sf{(f[g(x)])' = f'[g(x)] \: \: • \: \: g'(x)}[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \:• \: \: \dfrac{d}{dx} \: \cosh(2x) }[/tex]

[tex]\small\textsf{Set aside the first term and differentiate the second term}[/tex]

[tex]\small\textsf{By the Chain Rule of differentiation, let u = 2x}[/tex]

[tex]\small\sf{ \dfrac{d}{du} \: \cosh(u) \: \: • \: \: \dfrac{d}{dx} \: 2x }[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(u) \: \: • \: \: 2 }[/tex]

[tex]\small\textsf{Return u = 2x as the substitution}[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\sf{y' = \dfrac{1}{u} \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\textsf{Return the main u-substitution}[/tex]

[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: 2\sinh(2x) }[/tex]

[tex]\therefore\small\sf{y' = ln( \cosh(2x) ) \implies\small\boxed{\green{\sf{ \frac{2 \sinh(2x) }{ \cosh(2x) } }}}}[/tex]

[tex]\small\textsf{\#AlwaysBeTheGreat}[/tex]