DeanGD20
Answered

Makakuha ng pinakamahusay na mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.

Adam starts with the number z = 1 + 2i on the complex plane. First, he dilates z by a factor of 2 about the origin. Then, he reflects it across the real axis. Finally, he rotates it 90° counterclockwise about the origin. The resulting complex number can be written in the form a + bi where a and b are real numbers. What is the resulting complex number?

Please answer with solution, thanks in advance! :))


Sagot :

Answer:

4 + 2i

Step-by-step explanation:

Given: The starting number is z = 1 + 2i.

After getting dilated by a factor of 2, z becomes 2 + 4i

.

Then, the number is reflected across the real axis, so the number becomes  2 - 4i

.

Now, the resulting number (2 - 4i) is rotated 90° anticlockwise.

We know that if the point (a, b) is rotated anticlockwise by the angle α, then we get point  (a cos α − b sin α, b cos α + a sin α).

So (2, -4) after getting rotated by 90° anticlockwise becomes  (2 cos 90° + 4 sin 90°, −4 cos 90° + 2 sin 90°) = (4, 2).

So, the resulting complex number is 4 + 2i

#CarryOnLearning