psyche0
Answered

Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Sumali sa aming Q&A platform at kumonekta sa mga propesyonal na handang magbigay ng eksaktong sagot sa iyong mga tanong. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.

Find the area of a pentagon which is circumscribing a circle having an area of 420.60 cm²​

Sagot :

Problem:

Find the area of a pentagon which is circumscribing a circle having an area of 420.60 cm²​

Solution:

Area of Circle = 420.60 cm²

Area of Circle = πr²

420.60 = πr²

[tex]\[\begin{array}{l}{r^2} = \frac{{420.6}}{\pi }\\\\r = \sqrt {133.88113812890235644878502174896} \\\\r = 11.570701712899799598cm\end{array}\][/tex]

A Pentagon is a 5 sided polygon

[tex]\[\begin{array}{l}\theta = \frac{{360}}{5}\\\\\theta = 72\\\\\frac{{72}}{2} = 36^\circ \end{array}\][/tex]

[tex]\[\begin{array}{l}\tan \theta = \frac{y}{{11.5707}}\\\\\tan 36 = \frac{y}{{11.5707}}\\\\y = 11.5707\tan 36\\\\y = 8.40660562879cm\\\end{array}\][/tex]

Area of 1 triangle = 1/2(b)(h)

Area of 1 triangle = 1/2(8.40660562879 + 8.40660562879)(11.57070171289)

Area of 1 triangle = 1/2(16.8132112576 )(11.57070171289)

Area o 1 triangle = 97.27cm²

Area of 5 triangles = 97.27(5)

Area of 5 triangles = 486.35 cm²

Answer:

The area of the pentagon circumscribing a circle is 486.35cm²

#CarryOnLearning

View image KallesElias