Makakuha ng mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mabilis at tumpak na Q&A platform. Maranasan ang kaginhawaan ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa mga bihasang propesyonal sa aming platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

find the vertices of the triangle with sides x - 5y + 8 = 0, 4x - y - 6 = 0, and 3x + 4y + 5 = 0.

Sagot :

To find the coordinates of the vertices of the triangle you'll have:
x - 5y + 8 = 0        ----equation 1
4x - y - 6 = 0         -----equation 2
3x + 4y + 5 = 0    -----equation 3
--------------------
From equations 1 and 2
x - 5y + 8 = 0   ----equation 1
4x - y - 6 = 0   ----equation 2
-------------------
Multiply equation 1 with 4
[x - 5y + 8 = 0]    x4
4x - 20y + 32 = 0     -----equation 1'
--------------------
 Subtract equation 1' from 2
      4x - y - 6 = 0
-    4x - 20y + 32 = 0
             19y - 38 = 0
             19y = 38
               y = 2
-------------------
Substitute y=2 to equation 1
x - 5y + 8 = 0
x - 5(2) + 8 = 0
x - 10 + 8 = 0
x - 2 = 0
x = 2
-------------------
The first vertex is at (2,2)
-------------------
4x - y - 6 = 0        ------equation 2
3x + 4y + 5 = 0    ------equation 3
-------------------
From equation 2
4x - y - 6 = 0
y = 4x - 6    ---equation 2'
-------------------
Substitute equation 2' to equation 3
3x + 4y + 5 = 0
3x + 4(4x - 6) + 5 = 0
3x + 16x - 24 + 5 = 0
19x - 19 = 0
19x = 19 
x = 1
----------------
Substitute x=1 to equation 2'
y = 4x - 6
y = 4(1) - 6
y = 4 - 6
y = -2
----------------
The second vertex is at (1,-2)
----------------
3x + 4y + 5 = 0       ---equation 3
x - 5y + 8 = 0         ----equation 1
----------------
From equation 1
x - 5y + 8 = 0
x = 5y - 8     ------equation 4
-----------------
Substitute equation 4 to equation 3
3x + 4y + 5 = 0
3(5y-8) + 4y + 5 = 0
15y - 24 + 4y + 5 = 0
19y - 19 = 0
19y = 19
y = 1
----------------
Substitute y=1 to equation 4
x = 5y - 8
x = 5(1) - 8
x = 5 - 8
x = -3
---------------
The 3rd vertex is at (-3,1)
--------------