jrgmlzrte
Answered

Ang Imhr.ca ay tumutulong sa iyo na makahanap ng mga sagot sa iyong mga katanungan mula sa isang komunidad ng mga eksperto. Ang aming platform ay nag-uugnay sa iyo sa mga propesyonal na handang magbigay ng eksaktong sagot sa lahat ng iyong mga katanungan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.

An equilateral triangle is inscribed in a circle with an area equal to 144π square cm. Find the area of a triangle.



Sagot :

The geometric center of an equilateral triangle is also the center of the circumscribed circle. This means that the distance from the center of the triangle to its vertex is also the same to the radius of the circle.


The translation of the problem is that you draw a triangle inside a circle.

The circle's area is 144 cm^2. To find the radius:
A of circle =pi* radius^2
radius=sqrt (144/pi)
r=6.77 approximately

If you connect the center point of the triangle to it's vertices you will make 3 isosceles triangles. The length of the sides of the isosceles triangle are 6.77,6.77 and the unknown side. Also, the line from the center to the vertex is an angle bisector (read properties of equilateral triangles). Since equilateral triangles have interior angles that measure 60° half of that is 30°. So the measurement of the obtuse angle of the isosceles triangle is 120°. (120°+30°+30°=180°)

To find the unknown side (length of the side of the triangle) use cosine law. I'll attach a picture of the solution.
View image januelzoe1008
View image januelzoe1008
ajsedo
You could take a look at the picture
View image ajsedo