Makakuha ng mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mabilis at tumpak na Q&A platform. Itanong ang iyong mga katanungan at makatanggap ng detalyadong sagot mula sa mga propesyonal na may malawak na karanasan sa iba't ibang larangan. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
1:5:6 ration of a triangle will give you a set of angles which is 15 degrees, 75 degrees and 90 degrees -- which means that you have right triangle.
Being the smallest angle, 15 degrees is the side that is opposite to the 4m.
Making use of the trigonometric functions (the SOH-CAH-TOA thingy), you'll need to get the side that is opposite to the 75 degree-angle for the calculation of area.
To get the other leg:
Sine 15 degrees = 4m/ Hypotenuse, then you will just derive the formula of hypotenuse here and it will be Hypotenuse = 4m/sine 15 degrees
Cosine 15 degrees = Adjacent/ hypotenuse, then it will be hypotenuse = adjacent/cosine 15 degrees, but we already know the equivalent of hypotenuse so we will use it as (4m/sine 15 degrees = adjacent/cosine 15 degrees). Deriving the measure of the adjacent side, we will have 4(cosine 15 degrees)/ sine 15 degrees.
Which is equal to:
[tex] \frac{4(1+ \sqrt{3} )}{\sqrt{3} -1} [/tex]
To get the area, we would just multiply the adjacent side to the 2m (because we already divided it by 2 so we would not need to after).
And we will arrive to [tex] \frac{8 + 8 \sqrt{3} }{ \sqrt{3} - 1} [/tex] , however simplifying it could get us to [tex] 16 + 8 \sqrt{3} [/tex] or approximation of 29.856 square meters.
Being the smallest angle, 15 degrees is the side that is opposite to the 4m.
Making use of the trigonometric functions (the SOH-CAH-TOA thingy), you'll need to get the side that is opposite to the 75 degree-angle for the calculation of area.
To get the other leg:
Sine 15 degrees = 4m/ Hypotenuse, then you will just derive the formula of hypotenuse here and it will be Hypotenuse = 4m/sine 15 degrees
Cosine 15 degrees = Adjacent/ hypotenuse, then it will be hypotenuse = adjacent/cosine 15 degrees, but we already know the equivalent of hypotenuse so we will use it as (4m/sine 15 degrees = adjacent/cosine 15 degrees). Deriving the measure of the adjacent side, we will have 4(cosine 15 degrees)/ sine 15 degrees.
Which is equal to:
[tex] \frac{4(1+ \sqrt{3} )}{\sqrt{3} -1} [/tex]
To get the area, we would just multiply the adjacent side to the 2m (because we already divided it by 2 so we would not need to after).
And we will arrive to [tex] \frac{8 + 8 \sqrt{3} }{ \sqrt{3} - 1} [/tex] , however simplifying it could get us to [tex] 16 + 8 \sqrt{3} [/tex] or approximation of 29.856 square meters.
Umaasa kami na nakatulong ito. Mangyaring bumalik kapag kailangan mo ng higit pang impormasyon o mga sagot sa iyong mga katanungan. Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Imhr.ca, ang iyong pinagkakatiwalaang tagasagot. Huwag kalimutang bumalik para sa karagdagang impormasyon.