Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming Q&A platform. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
[tex]1)\\\\ \sqrt{2}( \sqrt{3}- \sqrt{5})= \sqrt{2}\cdot \sqrt{3}- \sqrt{2}\cdot \sqrt{5}=\sqrt{2\cdot 3}-\sqrt{2\cdot 5}=\sqrt{6}-\sqrt{10}\\\\2)\\\\ 4\sqrt{ 5}( \sqrt{5}+3 \sqrt{15})= 4\sqrt{ 5}\cdot \sqrt{5}+4\sqrt{ 5}\cdot 3 \sqrt{15}=4\cdot\sqrt{ 5\cdot 5}+12\cdot \sqrt{5\cdot 15}=\\\\=4\cdot\sqrt{ 25}+12\cdot \sqrt{75}=4\cdot 5+12\cdot \sqrt{25*3}=20+12\cdot \sqrt{25 }\cdot \sqrt{3}=20+12\cdot 5\cdot \sqrt{ 3}=\\\\=20+60\sqrt{ 3}[/tex]
[tex]3)\\\\ \sqrt{3}(\sqrt{ 21}- \sqrt{12}+ \sqrt{24 })= \sqrt{3} \cdot \sqrt{ 21}-\sqrt{3} \cdot \sqrt{12}+\sqrt{3} \cdot \sqrt{24 }=\sqrt{ 21\cdot 3}- \sqrt{12\cdot 3}+ \sqrt{24\cdot 3 }=\\\\=\sqrt{ 63 }- \sqrt{36}+ \sqrt{72}=\sqrt{9\cdot 7 }-6+ \sqrt{36*2}=\sqrt{9 }\cdot \sqrt{7}+ \sqrt{36 }\sqrt{2}-6=\\\\=3\sqrt{7}+6\sqrt{2}-6[/tex]
[tex]4)\\\\(2\sqrt{5}+5 \sqrt{3})^2=(2\sqrt{5})^2+2\cdot 2\sqrt{5} \cdot 5 \sqrt{3}+(5 \sqrt{3})^2=4*5+20\sqrt{5\cdot 3}+25*3=\\\\=20+20\sqrt{15}+75= 95+20\sqrt{15}[/tex]
[tex]5)\\\\ ( \sqrt{3}+ \sqrt{8})( \sqrt{3}- \sqrt{8}) =(\sqrt{3})^2- (\sqrt{8})^2=3-8=-5[/tex]
[tex]1)\\\\ \frac{3}{ \sqrt{5} } = \frac{3}{ \sqrt{5} }\cdot \frac{ \sqrt{5}}{ \sqrt{5} }=\frac{3\sqrt{5}}{\sqrt{5\cdot 5}}=\frac{3\sqrt{5}}{\sqrt{25}}= \frac{3\sqrt{5}}{ 5 }\\\\2)\\\\ \frac{8}{ \sqrt[3]{16} } = \frac{8}{ \sqrt[3]{16} } \cdot \frac{ \sqrt[3]{4}}{ \sqrt[3]{4} } =\frac{8\sqrt[3]{4}}{ \sqrt[3]{16\cdot 4} }=\frac{8\sqrt[3]{4}}{ \sqrt[3]{64}}=\frac{8\sqrt[3]{4}}{ 4} =2\sqrt[3]{4}[/tex]
[tex]3)\\\\ \frac{4}{1- \sqrt{2} } =\frac{4}{1- \sqrt{2} } \cdot \frac{1+\sqrt{2}}{1+ \sqrt{2} }= \frac{4(1+\sqrt{2})}{1^2- (\sqrt{2})^2 }=\frac{4(1+\sqrt{2})}{1-2 }=\frac{4(1+\sqrt{2})}{-1 }=-4(1+\sqrt{2})[/tex]
[tex]4)\\\\ \frac{ \sqrt{3} + \sqrt{5} }{ \sqrt{5} - \sqrt{3} } = \frac{ \sqrt{3} + \sqrt{5} }{ \sqrt{5} - \sqrt{3} } \cdot \frac{\sqrt{5}+ \sqrt{3} }{ \sqrt{5}+ \sqrt{3} }=\frac{(\sqrt{3}+ \sqrt{5})^2 }{(\sqrt{5})^2-(\sqrt{3})^2}= \frac{(\sqrt{3})^2+2\cdot \sqrt{3} \cdot \sqrt{5}+ (\sqrt{5})^2 }{5-3}= \\\\= \frac{3+2\cdot \sqrt{3\cdot 5} + 5 }{2}= \frac{8+2 \sqrt{15} }{2}= \frac{2(4+ \sqrt{15} )}{2}=4+ \sqrt{15}[/tex]
[tex]5)\\\\ \frac{ \sqrt{3}- 4 }{ \sqrt{2}+ \sqrt{3} } = \frac{ \sqrt{3}- 4 }{ \sqrt{2}+ \sqrt{3} }\cdot \frac{ \sqrt{2}- \sqrt{3} }{ \sqrt{2}- \sqrt{3} } =\frac{\sqrt{3}\cdot \sqrt{2}-\sqrt{3}\cdot \sqrt{3}-4\sqrt{2}+4\sqrt{3}}{( \sqrt{2})^2- (\sqrt{3} )^2}=\\\\=\frac{\sqrt{3\cdot 2} -\sqrt{3\cdot 3} -4\sqrt{2}+4\sqrt{3}}{2-3}= \frac{\sqrt{6} -\sqrt{9} -4\sqrt{2}+4\sqrt{3}}{-1}=\\\\= \frac{\sqrt{6} -3 -4\sqrt{2}+4\sqrt{3}}{-1}= -(\sqrt{6} -3 -4\sqrt{2}+4\sqrt{3})=4\sqrt{2}-\sqrt{6} -4\sqrt{3} +3[/tex]
[tex]3)\\\\ \sqrt{3}(\sqrt{ 21}- \sqrt{12}+ \sqrt{24 })= \sqrt{3} \cdot \sqrt{ 21}-\sqrt{3} \cdot \sqrt{12}+\sqrt{3} \cdot \sqrt{24 }=\sqrt{ 21\cdot 3}- \sqrt{12\cdot 3}+ \sqrt{24\cdot 3 }=\\\\=\sqrt{ 63 }- \sqrt{36}+ \sqrt{72}=\sqrt{9\cdot 7 }-6+ \sqrt{36*2}=\sqrt{9 }\cdot \sqrt{7}+ \sqrt{36 }\sqrt{2}-6=\\\\=3\sqrt{7}+6\sqrt{2}-6[/tex]
[tex]4)\\\\(2\sqrt{5}+5 \sqrt{3})^2=(2\sqrt{5})^2+2\cdot 2\sqrt{5} \cdot 5 \sqrt{3}+(5 \sqrt{3})^2=4*5+20\sqrt{5\cdot 3}+25*3=\\\\=20+20\sqrt{15}+75= 95+20\sqrt{15}[/tex]
[tex]5)\\\\ ( \sqrt{3}+ \sqrt{8})( \sqrt{3}- \sqrt{8}) =(\sqrt{3})^2- (\sqrt{8})^2=3-8=-5[/tex]
[tex]1)\\\\ \frac{3}{ \sqrt{5} } = \frac{3}{ \sqrt{5} }\cdot \frac{ \sqrt{5}}{ \sqrt{5} }=\frac{3\sqrt{5}}{\sqrt{5\cdot 5}}=\frac{3\sqrt{5}}{\sqrt{25}}= \frac{3\sqrt{5}}{ 5 }\\\\2)\\\\ \frac{8}{ \sqrt[3]{16} } = \frac{8}{ \sqrt[3]{16} } \cdot \frac{ \sqrt[3]{4}}{ \sqrt[3]{4} } =\frac{8\sqrt[3]{4}}{ \sqrt[3]{16\cdot 4} }=\frac{8\sqrt[3]{4}}{ \sqrt[3]{64}}=\frac{8\sqrt[3]{4}}{ 4} =2\sqrt[3]{4}[/tex]
[tex]3)\\\\ \frac{4}{1- \sqrt{2} } =\frac{4}{1- \sqrt{2} } \cdot \frac{1+\sqrt{2}}{1+ \sqrt{2} }= \frac{4(1+\sqrt{2})}{1^2- (\sqrt{2})^2 }=\frac{4(1+\sqrt{2})}{1-2 }=\frac{4(1+\sqrt{2})}{-1 }=-4(1+\sqrt{2})[/tex]
[tex]4)\\\\ \frac{ \sqrt{3} + \sqrt{5} }{ \sqrt{5} - \sqrt{3} } = \frac{ \sqrt{3} + \sqrt{5} }{ \sqrt{5} - \sqrt{3} } \cdot \frac{\sqrt{5}+ \sqrt{3} }{ \sqrt{5}+ \sqrt{3} }=\frac{(\sqrt{3}+ \sqrt{5})^2 }{(\sqrt{5})^2-(\sqrt{3})^2}= \frac{(\sqrt{3})^2+2\cdot \sqrt{3} \cdot \sqrt{5}+ (\sqrt{5})^2 }{5-3}= \\\\= \frac{3+2\cdot \sqrt{3\cdot 5} + 5 }{2}= \frac{8+2 \sqrt{15} }{2}= \frac{2(4+ \sqrt{15} )}{2}=4+ \sqrt{15}[/tex]
[tex]5)\\\\ \frac{ \sqrt{3}- 4 }{ \sqrt{2}+ \sqrt{3} } = \frac{ \sqrt{3}- 4 }{ \sqrt{2}+ \sqrt{3} }\cdot \frac{ \sqrt{2}- \sqrt{3} }{ \sqrt{2}- \sqrt{3} } =\frac{\sqrt{3}\cdot \sqrt{2}-\sqrt{3}\cdot \sqrt{3}-4\sqrt{2}+4\sqrt{3}}{( \sqrt{2})^2- (\sqrt{3} )^2}=\\\\=\frac{\sqrt{3\cdot 2} -\sqrt{3\cdot 3} -4\sqrt{2}+4\sqrt{3}}{2-3}= \frac{\sqrt{6} -\sqrt{9} -4\sqrt{2}+4\sqrt{3}}{-1}=\\\\= \frac{\sqrt{6} -3 -4\sqrt{2}+4\sqrt{3}}{-1}= -(\sqrt{6} -3 -4\sqrt{2}+4\sqrt{3})=4\sqrt{2}-\sqrt{6} -4\sqrt{3} +3[/tex]
Salamat sa pagbisita sa aming plataporma. Umaasa kaming nahanap mo ang mga sagot na hinahanap mo. Bumalik ka anumang oras na kailangan mo ng karagdagang impormasyon. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Maraming salamat sa pagtiwala sa Imhr.ca. Bisitahin kami ulit para sa mga bagong sagot mula sa mga eksperto.