Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto na dedikado sa pagbibigay ng tamang impormasyon. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

Find the complete solution of xdy+(x^3+xy^2-y)dx=0

Sagot :

Hi there! I am not so sure if this is the right answer but I will show it:

First we factor out [tex]xd[/tex] from the equation and get:
[tex]xd(y+ x^{3} +x y^{2} -y)=0 \\ xd(x^3+xy^2)=0 \\ x^{2} d(x^2+y^2)=0[/tex]

So our 1st case is that [tex]x^2d=0[/tex]
Case 1.1 [tex]x^2=0 \\ x=0[/tex]
Case 1.2 [tex]d=0[/tex]

Then our second case would be [tex] x^{2} +y^2=0[/tex]
[tex]x^2=-y^2[/tex]

Remember that all square numbers are greater than or equal to zero therefore [tex]y^2[/tex] cannot be negative and cannot be positive because that would make [tex] x^{2} [/tex] negative so [tex]y^2=0[/tex] therefore:
[tex]x^2=-y^2 \\ x=y=0[/tex]

So our solution set:
x={0}
y={0}
d={0}