zkdlinnn0
Answered

Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform.

A normal distribution has a mean of 10.2 and a standard deviation of 1.8. 

Find P (4.8 X ≤ 12). ​

Sagot :

Answer:

• The normal distribution is the most important distribution. It describes well the

distribution of random variables that arise in practice, such as the heights or weights

of people, the total annual sales of a firm, exam scores etc. Also, it is important for the

central limit theorem, the approximation of other distributions such as the binomial,

etc.

• We say that a random variable X follows the normal distribution if the probability

density function of X is given by

f(x) = 1

σ

e

− 1

2

(

x−µ

σ

)

2

, −∞ < x < ∞

This is a bell-shaped curve.

• We write X ∼ N(µ, σ). We read: X follows the normal distribution (or X is normally

distributed) with mean µ, and standard deviation σ.

• The normal distribution can be described completely by the two parameters µ and σ.

As always, the mean is the center of the distribution and the standard deviation is the

measure of the variation around the mean.

• Shape of the normal distribution. Suppose X ∼ N(5, 2).

x

f(x)

−3 −1 1 3 5 7 9 11 13

0.00 0.05 0.10 0.15 0.20

X ~ N(5,2)

• The area under the normal curve is 1 (100%).

Z ∞

−∞

1

σ

e

− 1

2

(

x−µ

σ

)

2

dx = 1

• The normal distribution is symmetric about µ. Therefore, the area to the left of µ is

equal to the area to the right of µ (50% each).

1

• Useful rule (see figure above):

The interval µ ± 1σ covers the middle ∼ 68% of the distribution.

The interval µ ± 2σ covers the middle ∼ 95% of the distribution.

The interval µ ± 3σ covers the middle ∼ 100% of the distribution.

• Because the normal distribution is symmetric it follows that

P(X > µ + α) = P(X < µ − α)

• The normal distribution is a continuous distribution. Therefore,

P(X ≥ a) = P(X > a), because P(X = a) = 0. Why?

• How do we compute probabilities? Because the following integral has no closed form

solution

P(X > α) = Z ∞

α

1

σ

e

− 1

2

(

x−µ

σ

)

2

dx = . . .

the computation of normal distribution probabilities can be done through the standard

normal distribution Z:

Z =

X − µ

σ

Theorem:

Let X ∼ N(µ, σ). Then Y = αX + β follows also the normal distribution as follows:

Y ∼ N(αµ + β, ασ)

Therefore, using this theorem we find that

Z ∼ N(0, 1)

Step-by-step explanation: