Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Maranasan ang kadalian ng paghahanap ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay.

Expand and simplify this expression: (4a-3)(-a+4)

Sagot :

Answer:

The expansion and simplified form is [tex]-4a^2+19a-12[/tex].

Further Explanation

One of the effective ways to expand when multiplying two binomial terms is by doing the FOIL Method. FOIL has the acronym F for First Terms, O for Outer Terms, I for Inner Terms, and L for Last terms.

Binomial terms/expression are terms that consist of two terms that make an expression.

Some Examples of Binomial Terms/Expressions

1. [tex]2x+1[/tex]

2. [tex]a+b[/tex]

3. [tex](2a+b)^2[/tex]

Some Ways to Expand Binomial Multiplication

1. The Binomial Theorem

2. The FOIL Method

Solution:

Do the FOIL method to do the expansion of the expression given. Multiply the first terms, outer terms, inner terms, and the last terms, then add all the products.

                                            [tex](4a-3)(-a+4)[/tex]

F - First Terms         [tex](4a)(-a)=-4a^2[/tex]

I - Inner Terms         [tex](-3)(-a)=3a[/tex]

O - Outer Terms      [tex](4a)(4)=16a[/tex]

L- Last Terms           [tex](-3)(4)=-12[/tex]

Sum of All the Products:

                                  [tex]\begin{aligned}-4a^2+3a+16a+(-12)=-4a^2+19a-12\end{aligned}[/tex]

The solution shows that the expansion and simplified form of [tex](4a-3)(-a+4)[/tex] is [tex]-4a^2+19a-12[/tex].

#LearnWithBrainly

To learn more examples about multiplying binomials, go to https://brainly.ph/question/86537

To learn other way to expand binomial terms, click the link https://brainly.ph/question/1917806

To learn more about the meaning of FOIL, access the link https://brainly.ph/question/1491047