Makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Ang aming platform ay nag-uugnay sa iyo sa mga propesyonal na handang magbigay ng eksaktong sagot sa lahat ng iyong mga katanungan. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.

Answer this carefully

Part #1 - Find x, show your solution . Item 1-2 only

Part #2 - Fill in the blank. Item 1-6

Part #3 - Answer A and B

Unhelpful answer will be reported

Answer This Carefully Part 1 Find X Show Your Solution Item 12 Only Part 2 Fill In The Blank Item 16 Part 3 Answer A And B Unhelpful Answer Will Be Reported class=
Answer This Carefully Part 1 Find X Show Your Solution Item 12 Only Part 2 Fill In The Blank Item 16 Part 3 Answer A And B Unhelpful Answer Will Be Reported class=
Answer This Carefully Part 1 Find X Show Your Solution Item 12 Only Part 2 Fill In The Blank Item 16 Part 3 Answer A And B Unhelpful Answer Will Be Reported class=

Sagot :

[tex]\large\textsf{PART 1. Find x.}[/tex]

[tex]\textsf{Number 1:}[/tex]

  • x is a base angle of an isosceles triangle.
  • The other base angle is 73°.
  • Using the Isosceles Triangle Theorem,

[tex]\qquad \qquad\qquad\red{\boxed{\tt x=73°}}[/tex]

[tex]\\[/tex]

[tex]\textsf{Number 2:}[/tex]

  • 65° is a base angle of an isosceles triangle.
  • ∠2 is a vertex angle.
  • Using the Isosceles Triangle Theorem,

[tex]\qquad\tt 65+65+m\angle 2=180 \\ \\ \qquad\tt 65+65+8x - 6 = 180 \\ \\ \qquad\tt 124+8x=180 \\ \\ \qquad\tt 8x=180-124 \\ \\ \qquad\tt 8x=56 \\ \\ \qquad\tt \frac{8x}{8} = \frac{56}{8} \\ \\ \qquad\red{\boxed{\tt x=7}}[/tex]

[tex]\\[/tex]

[tex]\large\textsf{PART 2. Fill in the blank.}[/tex]

*The two-column proof is attached above.

[tex]\\[/tex]

[tex]\large\textsf{PART 3.}[/tex]

[tex]\textsf{For A:}[/tex]

Answer: [tex]\red{\tt \overline{LJ}\cong \overline{LM}, \overline{LK}\cong \overline{LK}}[/tex] or

[tex]\qquad\qquad[/tex][tex]\red{\tt \overline{LJ}\cong \overline{LM}, \overline{JK}\cong \overline{MK}}[/tex]

Explanation:

HL Congruence Theorem requires that the hypotenuse and a leg of the first right triangle is congruent to the corresponding hypotenuse and a leg of the second right triangle.

☞ Just as long as the hypotenuse of the two triangles are congruent, any of the two corresponding legs can suffice the HL Congruence Theorem.

[tex]\\[/tex]

[tex]\textsf{For B:}[/tex]

Answer: [tex]\red{\tt LL\: Congruence\:Theorem}[/tex]

Explanation:

☞The LL Congruence Theorem requires that two corresponding legs of the two right triangles are congruent.

  • First corresponding legs: Given that K is the midpoint of JM, we can prove that JK≅MK by Definition of Midpoint.
  • Second corresponding legs: LK≅LK by Reflexive Property of Equality.

[tex]\\[/tex]

#CarryOnLearning

View image chirilu