Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Kumuha ng mga sagot na kailangan mo nang mabilis at eksakto mula sa dedikadong komunidad ng mga eksperto sa aming platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

Find the Value of x so that x+2,5x+1,x+11 will form a geometric sequence.Justify your answer.Find the sum of the First 10 terms of the given sequence..Show your Solutions Plssssss Anyone??

Sagot :

Since these are terms of a geometric sequence, they have a common ratio so:
[tex] \frac{5x+1}{x+2} = \frac{x+11}{5x+1} \\ 25x^2+10x+1=x^2+13x+22 \\24x^2-3x-21=0 \\ 8x^2-x-7=0 \\ (8x+7)(x-1)=0[/tex]

Therefore x can be equal to -7/8 or 1.

The sum of n terms in a geometric sequence is equal to [tex] \frac{a_1(r^n-1)}{r-1} [/tex]

When x = -7/8, the first term would be 9/8 and the common ratio would be -3.
The sum of the first ten terms would be:
[tex]( \frac{9}{8})[(-3)^{10}-1]/(-3-1) \\ =( \frac{9}{8})( 59,048)/-4 \\ =-16,607.25[/tex]

When x = 1, the first term would be 3 and the ratio would be 2.
[tex]3(2^{10}-1)/(2-1) \\ =3(1023)/1 \\ =3069[/tex]