Makakuha ng mabilis at tumpak na mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinakamahusay na Q&A platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto sa aming komprehensibong Q&A platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang malawak na network ng mga propesyonal.
Sagot :
Answer:
Quadratics or quadratic equations can be defined as a polynomial equation of a second degree, which implies that it comprises of a minimum of one term that is squared. The general form of the quadratic equation is:
ax² + bx + c = 0
where x is an unknown variable and a,b,c are numerical coefficients
Here, a ≠ 0 because if it equals zero then the equation will not remain quadratic anymore and it will become a linear equation, such as:
bx+c=0
Thus, this equation cannot be called a quadratic equation.
The terms a, b and c are also called quadratic coefficients.
The solutions to the quadratic equation are the values of the unknown variable x, which satisfy the equation. These solutions are called roots or zeros of quadratic equations. The roots of any polynomial are the solutions for the given equation.
Quadratic Equation
Step-by-step explanation:
Hi!
Quadratic functions are parabolic in nature and they can be used to infer maximum or minimum points in a graph. This is especially useful in the fields of accounting (e.g. maximizing profit margins) and construction (e.g. minimum perimeters).
Hope this is succinct enough! Let me know if you need further help.
Quadratic functions are parabolic in nature and they can be used to infer maximum or minimum points in a graph. This is especially useful in the fields of accounting (e.g. maximizing profit margins) and construction (e.g. minimum perimeters).
Hope this is succinct enough! Let me know if you need further help.
Salamat sa paggamit ng aming plataporma. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Imhr.ca ay laging nandito para magbigay ng tamang sagot. Bisitahin muli kami para sa pinakabagong impormasyon.