Makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Sumali sa aming Q&A platform at makakuha ng eksaktong sagot sa lahat ng iyong mga tanong mula sa mga propesyonal sa iba't ibang larangan. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.
Sagot :
✒️ QUADRATIC FUNC.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]
» Write the following in their general form and identify the vertex of the graph.
- 1. f(x) = (x+3)² + 6
- 2. f(x) = -2(x+5)² + 9
- 3. f(x)= -(x-7)² - 2
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
General Form:
[tex] \qquad \large \: \rm 1) \; f(x) = x^2 + 6x + 15 [/tex]
[tex] \qquad \large \: \rm 2) \; f(x) = \text-2x^2 - 20x - 41 [/tex]
[tex] \qquad \large \: \rm 3) \; f(x) = \text-x^2 + 14x - 51 [/tex]
Vertices:
[tex] \qquad \large \: \rm 1) \; (\text-3,6) [/tex]
[tex] \qquad \large \: \rm 2) \; (\text-5,9) [/tex]
[tex] \qquad \large \: \rm 3) \; (7,\text-2) [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
» Since the quadratic function is already in vertex form, we can find its vertex as (h, k).
- [tex] f(x) = a(x - h)^2 + k [/tex]
» After taking the values of h and k, we can now rearrange the function in general form.
- [tex] f(x) = ax^2 + bx + c [/tex]
[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]
Number 1:
» Since h is -3 and k is 6, then the vertex of the parabola is at (-3, 6). Now rearrange it in general form.
- [tex] f(x) = (x + 3)^2 + 6 [/tex]
- [tex] f(x) = x^2 + 6x + 9 + 6 [/tex]
- [tex] f(x) = x^2 + 6x + 15 [/tex]
[tex] \therefore [/tex] f(x) = x² + 6x + 15 is the general form of the given quadratic function.
[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]
Number 2:
» Since h is -5 and k is 9, then the vertex of the parabola is at (-5, 9). Now rearrange it in general form.
- [tex] f(x) = \text-2(x + 5)^2 + 9 [/tex]
- [tex] f(x) = \text-2(x^2 + 10x + 25) + 9 [/tex]
- [tex] f(x) = \text-2x^2 - 20x - 50 + 9 [/tex]
- [tex] f(x) = \text-2x^2 - 20x - 41 [/tex]
[tex] \therefore [/tex] f(x) = -2x² - 20x - 41 is the general form of the given quadratic function.
[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]
Number 3:
» Since h is 7 and k is -2, then the vertex of the parabola is at (7, -2). Now rearrange it in general form.
- [tex] f(x) = \text-(x - 7)^2 - 2 [/tex]
- [tex] f(x) = \text-(x^2 - 14x + 49) - 2 [/tex]
- [tex] f(x) = \text-x^2 + 14x - 49 - 2 [/tex]
- [tex] f(x) = \text-x^2 + 14x - 51 [/tex]
[tex] \therefore [/tex] f(x) = -x² + 14x - 51 is the general form of the given quadratic function.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
Salamat sa pagbisita sa aming plataporma. Umaasa kaming nahanap mo ang mga sagot na hinahanap mo. Bumalik ka anumang oras na kailangan mo ng karagdagang impormasyon. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Ang iyong mga tanong ay mahalaga sa amin. Balik-balikan ang Imhr.ca para sa higit pang mga sagot.