Ang Imhr.ca ang pinakamahusay na solusyon para sa mga naghahanap ng mabilis at tumpak na mga sagot sa kanilang mga katanungan. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.

pa help po ako salamt​

Pa Help Po Ako Salamt class=

Sagot :

Solving for x and y

Answers:

First Circle:

On a whole circle, the measure of it is 360. If the other arc measures 210, then we must compute it to find the measure of the other arc.

Let n be the other arc.

n + 210 = 360

n = 360 - 210

n = 150

The variable x is a central angle of the circle and its intercepted arc is equal to 150°.

Central Angle (x) = Intercepted Arc (n)

Central Angle (x) = 150°

x = 150°

Second Circle:

Let n be the missing arc.

n + 115 + 95 = 360°

n + 210 = 360°

n = 360 - 210

n = 150

The variable x is an inscribed angle of the circle, and its intercepted arc is equal to 150.

Inscribed Angle (x) = [tex]\frac{1}{2}[/tex] Intercepted Arc (n)

Inscribed Angle (x) = [tex]\frac{1}{2}[/tex] 150

Inscribed Angle (x) = 75

x = 75°

Third Circle:

  • Finding the value of x.

Let n be the other arc.

n + 250 = 360

n = 360 - 250

n = 110°

The variable x is an inscribed angle of the circle, and n is its intercepted arc that is equal to 110.

x = [tex]\frac{1}{2}[/tex] n

x = [tex]\frac{1}{2}[/tex] (110)

x = 55°

  • Finding the value of y.

The intercepted arc of inscribed angle y is equal to 250°.

Let m be the intercepted arc of inscribed angle y.

y = [tex]\frac{1}{2}[/tex] m

y = [tex]\frac{1}{2}[/tex] (250)

y = 125°

Fourth Circle:

Let n be the missing arc.

n + 250 + 50 = 360

n + 300 = 360

n = 360 - 300

n = 60

Variable x is an angle formed by a tangent line and a secant line.

x = [tex]\frac{1}{2}[/tex] ( Major arc - Minor Arc)

x = [tex]\frac{1}{2}[/tex] ( 250 - 60)

x = [tex]\frac{1}{2}[/tex] (190)

x = 95°

Fifth Circle:

Variable x is the angle formed by intersecting two secants.

x = [tex]\frac{1}{2}[/tex] (Major arc - Minor Arc)

x = [tex]\frac{1}{2}[/tex] (105 - 25)

x = [tex]\frac{1}{2}[/tex] (80)

x = 40°

Sixth Circle:

x = [tex]\frac{1}{2}[/tex] (Major Arc + Minor Arc)

x = [tex]\frac{1}{2}[/tex] ( 135 + 55)

x = [tex]\frac{1}{2}[/tex] (190)

x = 95°