Makakuha ng pinakamahusay na mga solusyon sa lahat ng iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Maranasan ang kadalian ng paghahanap ng mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
DIRECTIONS:
Find the sum of the following arithmetic sequence. Show your complete solution.
- Even integers between 1 and 101.
- Odd integers between 0 and 100.
- Multiples of 10 from 10 to 200.
ANSWERS:
- The sum is 2550.
- The sum of 2500.
- The sum is 2100.
SOLUTION:
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 1,
» List the even integers between 1 and 101.
[tex] \boxed {\begin{array}{c} \small\underline\textsf{Even numbers from 1 to 101:} \\\\ \textsf{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, } \\\textsf {22, 24, 26, 28, 30, 32, 34, 36, 38, 40, } \\\textsf{42, 44, 46, 48, 50, 52, 54, 56, 58, 60, } \\ \textsf{ 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,} \\\textsf{ 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100. } \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 2, 4, 6, 8, 10, ..., 100 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 2 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{50} =\frac{50}{2} [2(2) + (50-1)2] } [/tex]
- [tex] \sf{S_{50} = 25 [4 + (49)2] } [/tex]
- [tex] \sf{S_{50} = 25 (4 + 98) } [/tex]
- [tex] \sf{S_{50} = 25 (102) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{50} = 2550 }}} [/tex]
Thus, the sum of all even integers between 1 and 101 is 2550.
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 2,
» List the odd integers between 1 and 100.
[tex] \boxed {\begin{array}{c} \small\underline\textsf{Odd numbers from 1 to 100:} \\\\ \textsf{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, } \\\textsf {21, 23, 25, 27, 29, 31, 33, 35, 37, 39, } \\\textsf{41, 43, 45, 47, 49, 51, 53, 55, 57, 59, } \\ \textsf{ 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,} \\\textsf{ 81, 83, 85, 87, 89, 91, 93, 95, 97, and 99. } \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 1, 3, 5, 7, 9, ..., 99 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 1 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{50} =\frac{50}{2} [2(1) + (50-1)2] } [/tex]
- [tex] \sf{S_{50} = 25 [2 + (49)2] } [/tex]
- [tex] \sf{S_{50} = 25 (2 + 98) } [/tex]
- [tex] \sf{S_{50} = 25 (100) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{50} = 2500 }}} [/tex]
Thus, the sum of all odd integers between 1 and 100 is 2500.
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 3,
» List the multiples of 10 from 10 to 200.
[tex] \qquad \boxed {\begin{array}{c} \small\underline\textsf{Multiples of 10 from 10 to 200. } \\\\ \textsf{ 10, 20, 30, 40, 50 } \\\textsf { 60, 70, 80, 90, 100 } \\\textsf{ 110, 120, 130, 140, 150, } \\ \textsf{ 160, 170, 180, 190, and 200} \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 10, 20, 30, 40, 50, ..., 200 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 10 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 20 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 10 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{20} =\frac{20}{2} [2(10) + (20-1)10] } [/tex]
- [tex] \sf{S_{20} = 10 [20 + (19)10] } [/tex]
- [tex] \sf{S_{20} = 10 (20 + 190) } [/tex]
- [tex] \sf{S_{20} = 10 (210) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{20} = 2100 }}} [/tex]
Thus, the sum of all multiples of 10 from 10 to 200 is 2100.
••••••••••••••••••••••••••••••••••••••••••••••••••
#BrainlyChallenge2022
Umaasa kaming nahanap mo ang hinahanap mo. Huwag mag-atubiling bumalik sa amin para sa higit pang mga sagot at napapanahong impormasyon. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa karagdagang impormasyon at mga sagot sa iba pang mga tanong na mayroon ka. Maraming salamat sa pagbisita sa Imhr.ca. Bumalik muli para sa higit pang kapaki-pakinabang na impormasyon at sagot mula sa aming mga eksperto.