Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Kumuha ng detalyadong mga sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto na dedikado sa pagbibigay ng eksaktong impormasyon. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay.
Sagot :
✒️CIRCLE EQUATION
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \large \:\: \rm (x-4)^2 + (y-1)^2 = 50 [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
The center of the circle is the midpoint of the diameter segment. Find the midpoint between the endpoints of the diameter.
[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Midpoint = \bigg(\frac{x_1+x_2}2,\,\frac{y_1+y_2}2\bigg)} \end{align} [/tex]
- [tex] \rm Midpoint = \bigg(\frac{\text-1+9}2,\,\frac{\text-4+6}2 \bigg) \\ [/tex]
- [tex] \rm Midpoint = \bigg(\frac{\,8\,}2,\,\frac{\,2\,}2 \bigg) \\ [/tex]
- [tex] \rm Midpoint = (4, \,1) [/tex]
Thus, the center of the circle is at (4, 1). Substitute it to the equation of the circle in standard form that is written as:
- [tex] (x-h)^2 + (y-k)^2 = r^2 [/tex]
Where (h,k) is the center and r is the radius of the circle.
- [tex] (x-4)^2 + (y-1)^2 = r^2 [/tex]
Find the square of the radius by substituting one of the given endpoints of the diameter. We will be using (9,6).
- [tex] (9-4)^2 + (6-1)^2 = r^2 [/tex]
- [tex] (5)^2 + (5)^2 = r^2 [/tex]
- [tex] 25 + 25 = r^2 [/tex]
- [tex] 50 = r^2 [/tex]
Substitute the square of the radius to the given equation with the given center.
- [tex] (x-4)^2 + (y-1)^2 = 50 [/tex]
Therefore, the equation of the circle in standard form is (x-4)² + (y-1)² = 50
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ
CIRCLE EQUATION
[tex]\huge\bold{✒Solution:}[/tex]
[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
According to the question, the center of circle [tex] \mathtt{( \frac{ - 1 + 9}{2}, \frac{ - 4 + 6}{2}) \implies \: (4,1)}[/tex] and the diameter:
[tex] \mathtt{\sqrt{ (- 1 - 9)^{2} + ( - 4 - 6)^{2} }}[/tex]
[tex] •\: \mathtt{ \sqrt{100 + 100} }[/tex]
[tex]• \: \mathtt{10 \sqrt{2} }[/tex]
So the radius : [tex] \mathtt{ 5\sqrt{2} }[/tex]
So the equation : [tex] \mathtt{(x - 4) ^{2} + (y - 1)^{2} = ( 5\sqrt{2})^{2} = 50}[/tex]
[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\huge\bold{✒Answer:}[/tex]
[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
Therefore, the equation of the circle in standard form is (x - 4)² + (y - 1)² = 50
[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
(ノ^_^)ノ
Salamat sa paggamit ng aming serbisyo. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Salamat sa pagpunta. Nagsusumikap kaming magbigay ng pinakamahusay na mga sagot para sa lahat ng iyong mga katanungan. Kita tayo muli sa susunod. Imhr.ca ay nandito para sa iyong mga katanungan. Huwag kalimutang bumalik para sa mga bagong sagot.