Answered

Makakuha ng mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mabilis at tumpak na Q&A platform. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga propesyonal. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay.

what is the equation of the circle with diameter whose endpoints are (3,1) and (5.5)

Sagot :

UK2019

✏️CIRCLE EQUATION

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{QUESTION:}}[/tex]

  • What is the equation of the circle with diameter whose endpoints are (3,1) and (5,5)?

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{ANSWER:}}[/tex]

[tex]\quad\Large\rm»\:\: \green{(x-4)^2+(y-3)^2=5}[/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{SOLUTION:}}[/tex]

- The equation of the circle in standard form is written as:

  • [tex](x-h)^2+(y-k)²=r^2[/tex]

- Where (h,k) is the center and r is the radius.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

- Find the midpoint between the endpoints because that would be the center of the circle.

[tex] \begin{aligned}& \bold{ \color{lightblue}Formula:} \\& \boxed{M = \bigg(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\bigg)}\end{aligned}[/tex]

  • [tex] \begin{aligned}{Center = \bigg(\frac{3 + 5}{2},\frac{1 + 5}{2}\bigg)}\end{aligned}[/tex]

  • [tex] \begin{aligned}{Center = \bigg(\frac{8}{2},\frac{6}{2}\bigg)}\end{aligned}[/tex]

  • [tex]Center = (4, 3)[/tex]

- The center is at (4,3). Substitute in the standard form of the equation.

  • [tex](x - 4)^{2} + (y - 3)^{2} = {r}^{2} [/tex]

- Find the square of the radius if it passes through one of the given endpoints of the diameter: (5,5)

  • [tex](5 - 4)^{2} + (5 - 3)^{2} = {r}^{2} [/tex]

  • [tex](1)^{2} + (2)^{2} = {r}^{2} [/tex]

  • [tex]1 + 4 = {r}^{2} [/tex]

  • [tex]5 = {r}^{2} [/tex]

- Thus, the radius² is 5. Substitute the square of the radius to the equation.

  • [tex](x - 4)^{2} + (y - 3)^{2} = 5[/tex]

[tex]\therefore[/tex] (x - 4)² + (y - 3)² = 5 is the standard form of the equation.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning