Ang Imhr.ca ang pinakamahusay na solusyon para sa mga naghahanap ng mabilis at tumpak na mga sagot sa kanilang mga katanungan. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.
Sagot :
The name of a regular polygon can be name as n-gon where where n is the number of sides of a polygon.
In order to find the name of a regular polygon, we have to get the number of sides of a polygon with the given number of diagonals by using the formula
no. of diagonals = n(n-3) / 2 where n is the no. of sides
90 = n(n-3) / 2
90 = (n^2 - 3n) / 2
90×2 = n^2 - 3n
180 = n^2 - 3n
0 = n^2 - 3n - 180
0 = (n - 15)(n + 12)
n - 15 = 0 n + 12 = 0
n = 15 n = -12
We have two values of n which are 15 and -12. But we will not consider n = -12 because there is no possibility to have a negative number of sides of a polygon.
So we have 15 number of sides of a polygon.
Therefore the name of a regular polygon that has 90 diagonals is 15-gon or pendedecagon.
In order to find the name of a regular polygon, we have to get the number of sides of a polygon with the given number of diagonals by using the formula
no. of diagonals = n(n-3) / 2 where n is the no. of sides
90 = n(n-3) / 2
90 = (n^2 - 3n) / 2
90×2 = n^2 - 3n
180 = n^2 - 3n
0 = n^2 - 3n - 180
0 = (n - 15)(n + 12)
n - 15 = 0 n + 12 = 0
n = 15 n = -12
We have two values of n which are 15 and -12. But we will not consider n = -12 because there is no possibility to have a negative number of sides of a polygon.
So we have 15 number of sides of a polygon.
Therefore the name of a regular polygon that has 90 diagonals is 15-gon or pendedecagon.
There is a formula for finding the number of sides of a polygon given diagonals, which is:
D=[tex]\frac{n(n-3)}{2}[/tex]
where:
D=diagonals
n=number of sides
Now substitute:
90=[tex]\frac{n(n-3)}{2}[/tex]
Multiply both sides with 2
180=n(n-3)
Distribute n
180=n²-3n
Equate it to Ax²+By+C=0
n²-3n-180=0
Factor:
(n-15)(n+12)=0
n-15=0 n+12=0
n=15 n=-12
Since there are no negative sides, then we consider n=15
the name of the polygon that has 90 diagonals is pentadecagon
Hope this helps =)
D=[tex]\frac{n(n-3)}{2}[/tex]
where:
D=diagonals
n=number of sides
Now substitute:
90=[tex]\frac{n(n-3)}{2}[/tex]
Multiply both sides with 2
180=n(n-3)
Distribute n
180=n²-3n
Equate it to Ax²+By+C=0
n²-3n-180=0
Factor:
(n-15)(n+12)=0
n-15=0 n+12=0
n=15 n=-12
Since there are no negative sides, then we consider n=15
the name of the polygon that has 90 diagonals is pentadecagon
Hope this helps =)
Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Bisitahin muli ang Imhr.ca para sa pinakabagong sagot at impormasyon mula sa mga eksperto.