Tuklasin ang mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinaka-mapagkakatiwalaang Q&A platform para sa lahat ng iyong pangangailangan. Kumuha ng agarang sagot sa iyong mga tanong mula sa isang malawak na network ng mga bihasang propesyonal sa aming Q&A platform. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform.
Sagot :
Height of the building = x
height of third bounce = 6.75 m
Number of bounce = 3
Equation (Geometric sequence formula):
(3/4)³ (x) = 6.75
(27/64) (x) = 6.75
(64/27) [ (27/64)(x) = 6.75 ] (64/27)
x = (6.75) (64/27)
x = 432/27
x = 16
ANSWER: The height (of the building) from which the ball was dropped
is 16 m.
-----------------------
Check:
To find the height of second bounce:
6.75 = height of the 3rd bounce.
x₂ = height of the second bounce
Since 6.75 is 3/4 of the height of the previous bounce x₂, then:
3/4 (x₂) = 6.75
(4/3) [3/4 (x₂) = 6.75 ] (4/3)
x₂ = 6.75 (4/3)
x₂ = 9 m, height of the second bounce
To find the height of first bounce:
9 m = height of the second bounce
x₁ = height of the first bounce
Since 9 m is 3/4 of the first bounce x₁, then:
3/4 (x₁) = 9
(4/3) [ 3/4 (x₁) = 9] (4/3)
x₁ = 12 , height of the first bounce
To find the height from where the ball was dropped:
12 m = height of the first bounce
x = height of the building
Since 12 m is 3/4 of the height from where the ball was dropped, then:
3/4 (x) = 12
(4/3) [ 3/4(x) = 12)] (4/3)
x = 12 (4/3)
x = 16 m, the height from where the object was dropped.
height of third bounce = 6.75 m
Number of bounce = 3
Equation (Geometric sequence formula):
(3/4)³ (x) = 6.75
(27/64) (x) = 6.75
(64/27) [ (27/64)(x) = 6.75 ] (64/27)
x = (6.75) (64/27)
x = 432/27
x = 16
ANSWER: The height (of the building) from which the ball was dropped
is 16 m.
-----------------------
Check:
To find the height of second bounce:
6.75 = height of the 3rd bounce.
x₂ = height of the second bounce
Since 6.75 is 3/4 of the height of the previous bounce x₂, then:
3/4 (x₂) = 6.75
(4/3) [3/4 (x₂) = 6.75 ] (4/3)
x₂ = 6.75 (4/3)
x₂ = 9 m, height of the second bounce
To find the height of first bounce:
9 m = height of the second bounce
x₁ = height of the first bounce
Since 9 m is 3/4 of the first bounce x₁, then:
3/4 (x₁) = 9
(4/3) [ 3/4 (x₁) = 9] (4/3)
x₁ = 12 , height of the first bounce
To find the height from where the ball was dropped:
12 m = height of the first bounce
x = height of the building
Since 12 m is 3/4 of the height from where the ball was dropped, then:
3/4 (x) = 12
(4/3) [ 3/4(x) = 12)] (4/3)
x = 12 (4/3)
x = 16 m, the height from where the object was dropped.
Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagtulong sa iyong makahanap ng impormasyon na kailangan mo, anumang oras na kailangan mo ito. Maraming salamat sa pagbisita sa Imhr.ca. Bumalik muli para sa higit pang kapaki-pakinabang na impormasyon at sagot mula sa aming mga eksperto.