Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Kumuha ng mga sagot mula sa mga eksperto nang mabilis at eksakto mula sa aming dedikadong komunidad ng mga propesyonal. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform.

Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.
(Type an integer or decimal rounded to two decimal places as needed.)​

Select The Correct Choice Below And If Necessary Fill In The Answer Boxes To Complete Your ChoiceType An Integer Or Decimal Rounded To Two Decimal Places As Nee class=

Sagot :

Answer:

[tex] \large \bold{Two \: triangles \: are \: produced.} \\ [/tex]

[tex]\qquad \bold{C_1 \approx 46.31^{\circ} (2 d.p.)} \\ [/tex]

[tex]\qquad \bold{A_1 \approx 93.69^{\circ} (2 d.p.)} \\ [/tex]

[tex] \qquad\bold{a_1 \approx 12.42 (2 d.p.)} \\ [/tex]

[tex]\qquad \bold{C_2 \approx 133.69^{\circ}(2 d.p.)} \\ [/tex]

[tex]\qquad \bold{A_2 \approx 6.31^{\circ} (2 d.p.)} \\ [/tex]

[tex]\qquad \bold{a_2 \approx 1.37 (2 d.p.)} \\ [/tex]

Step-by-step explanation:

[tex] \\ \sf{Given:} \\ [/tex]

  • [tex] \bold{b = 8} \\ [/tex]
  • [tex] \bold{c = 9} \\ [/tex]
  • [tex] \bold{B = 40^{\circ}} \\ [/tex]

Two triangles can be produced with the given information (see attached)

Angle C can be acute (less than 90°) and obtuse (greater than 90° and less than 180°).

Use the Sine Rule to find the measure of angle C.

[tex] \\ \large \underline{ \sf{ \blue{Sine \: Rule : }}} \\ [/tex]

[tex] \qquad \hookrightarrow \: \boxed{\bold{ \: \: \dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c} \: \: } } \\ [/tex]

(where A, B and C are the angles and a, b and c are the sides opposite the angles).

Substitute the given information into the Sine Rule formula and solve for C:

[tex]\implies \: \sf \dfrac{\sin 40^{\circ}}{8}=\dfrac{\sin C}{9} \\ [/tex]

[tex]\implies \: \sf \sin C= \dfrac{9\sin 40^{\circ}}{8} \\ [/tex]

[tex]\implies \: \sf C= \sin^{-1}\left(\dfrac{9\sin 40^{\circ}}{8}\right) \\ [/tex]

[tex]\implies \: \sf C=46.31^{\circ}\:\: (2\:d.p.) \\ [/tex]

The found angle is acute and is therefore the measure of angle C₁.

If C₁ is acute, then its supplement is obtuse as sin θ = sin (180° - θ), where 90° < θ < 180°.

Therefore, angle C₂ is:

[tex]\implies \: \sf 180^{\circ}-46.31^{\circ}=133.69^{\circ}\:(2\:d.p.) \\ [/tex]

[tex] \large \sf{Therefore:} \\ [/tex]

  • [tex] \bold{C_1 \approx 46.31^{\circ} (2 d.p.)} \\ [/tex]
  • [tex] \bold{C_2 \approx 133.69^{\circ} (2 d.p.)} \\ [/tex]

Now we have found angles C₁ and C₂, use the theorem of interior angles of a triangle sum to 180° to find A₁ and A₂.

[tex]\implies \: \sf A_1+B_1+C_1=180^{\circ} \\ [/tex]

[tex]\implies \: \sf A_1+40^{\circ}+46.31^{\circ}=180^{\circ} \\ [/tex]

[tex]\implies \: \sf A_1=93.69^{\circ} \\ [/tex]

[tex]\implies \: \sf A_2+B_2+C_2=180^{\circ} \\ [/tex]

[tex]\implies \: \sf A_2+40^{\circ}+133.69^{\circ}=180^{\circ} \\ [/tex]

[tex]\implies \: \sf A_2=6.31^{\circ} \\ [/tex]

Finally, use the Sine Rule again to find the measure of side a for each triangle.

[tex]\sf \qquad \mapsto \: \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C} \\ [/tex]

[tex]\implies \: \sf \dfrac{a_1}{\sin A_1}=\dfrac{b}{\sin B} \\ [/tex]

[tex]\implies \: \sf \dfrac{a_1}{\sin 93.69^{\circ}}=\dfrac{8}{\sin 40^{\circ}} \\ [/tex]

[tex]\implies \: \sf a_1=\dfrac{8\sin 93.69^{\circ}}{\sin 40^{\circ}} \\ [/tex]

[tex]\implies \: \sf a_1=12.42\:\:(2 \:d.p.) \\ [/tex]

[tex]\implies \: \sf \dfrac{a_2}{\sin A_2}=\dfrac{b}{\sin B} \\ [/tex]

[tex]\implies \: \sf \dfrac{a_2}{\sin 6.31^{\circ}}=\dfrac{8}{\sin 40^{\circ}} \\ [/tex]

[tex]\implies \: \sf a_2=\dfrac{8 \sin 6.31^{\circ}}{\sin 40^{\circ}} \\ [/tex]

[tex]\implies \: \sf a_2=1.37\:\:(2\:d.p.) [/tex]

View image Amaranthaceae
View image Amaranthaceae