Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Nagbibigay ang aming Q&A platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal.
Sagot :
Answer:
To solve this problem, let's start by listing all possible samples of size 3 from the population \(\{2, 3, 5, 7\}\).
### Step 1: List all possible samples
We are drawing samples without replacement. The total number of possible samples of size 3 from a population of 4 elements is given by the combination formula \( \binom{4}{3} \), which is 4. The samples are:
1. \( \{2, 3, 5\} \)
2. \( \{2, 3, 7\} \)
3. \( \{2, 5, 7\} \)
4. \( \{3, 5, 7\} \)
### Step 2: Calculate the mean of each sample
- Mean of \( \{2, 3, 5\} \): \( \frac{2 + 3 + 5}{3} = 3.33 \)
- Mean of \( \{2, 3, 7\} \): \( \frac{2 + 3 + 7}{3} = 4.00 \)
- Mean of \( \{2, 5, 7\} \): \( \frac{2 + 5 + 7}{3} = 4.67 \)
- Mean of \( \{3, 5, 7\} \): \( \frac{3 + 5 + 7}{3} = 5.00 \)
### Step 3: Create the sampling probability distribution
Each sample has an equal probability of being chosen. Since there are 4 samples, the probability for each sample is \( \frac{1}{4} \).
| Sample | Sample Mean | Probability |
|--------------|-------------|-------------|
| \{2, 3, 5\} | 3.33 | 0.25 |
| \{2, 3, 7\} | 4.00 | 0.25 |
| \{2, 5, 7\} | 4.67 | 0.25 |
| \{3, 5, 7\} | 5.00 | 0.25 |
### Step 4: Find the mean of the sampling distribution
The mean of the sampling distribution (\( \mu_{\bar{X}} \)) is the expected value of the sample means:
\[ \mu_{\bar{X}} = \sum (\text{Sample Mean} \times \text{Probability}) \]
\[ \mu_{\bar{X}} = (3.33 \times 0.25) + (4.00 \times 0.25) + (4.67 \times 0.25) + (5.00 \times 0.25) \]
\[ \mu_{\bar{X}} = 0.8325 + 1.00 + 1.1675 + 1.25 \]
\[ \mu_{\bar{X}} = 4.25 \]
### Step 5: Find the variance of the sampling distribution
The variance of the sampling distribution (\( \sigma^2_{\bar{X}} \)) is given by:
\[ \sigma^2_{\bar{X}} = \sum ((\text{Sample Mean} - \mu_{\bar{X}})^2 \times \text{Probability}) \]
\[ \sigma^2_{\bar{X}} = ( (3.33 - 4.25)^2 \times 0.25 ) + ( (4.00 - 4.25)^2 \times 0.25 ) + ( (4.67 - 4.25)^2 \times 0.25 ) + ( (5.00 - 4.25)^2 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = ( ( -0.92 )^2 \times 0.25 ) + ( ( -0.25 )^2 \times 0.25 ) + ( ( 0.42 )^2 \times 0.25 ) + ( ( 0.75 )^2 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = ( 0.8464 \times 0.25 ) + ( 0.0625 \times 0.25 ) + ( 0.1764 \times 0.25 ) + ( 0.5625 \times 0.25 ) \]
\[ \sigma^2_{\bar{X}} = 0.2116 + 0.015625 + 0.0441 + 0.140625 \]
\[ \sigma^2_{\bar{X}} = 0.412 \]
### Step 6: Find the standard deviation of the sampling distribution
The standard deviation (\( \sigma_{\bar{X}} \)) is the square root of the variance:
\[ \sigma_{\bar{X}} = \sqrt{\sigma^2_{\bar{X}}} \]
\[ \sigma_{\bar{X}} = \sqrt{0.412} \]
\[ \sigma_{\bar{X}} \approx 0.64 \]
### Summary
- Mean of the sampling distribution: \( \mu_{\bar{X}} = 4.25 \)
- Variance of the sampling distribution: \( \sigma^2_{\bar{X}} = 0.412 \)
- Standard deviation of the sampling distribution: \( \sigma_{\bar{X}} \approx 0.64
Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Imhr.ca, ang iyong pinagkakatiwalaang site para sa mga sagot. Huwag kalimutang bumalik para sa higit pang impormasyon.