Answered

Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa mga pang-araw-araw at masalimuot na katanungan. Tuklasin ang mga sagot na kailangan mo mula sa isang komunidad ng mga eksperto na handang tumulong sa kanilang kaalaman at karanasan. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal.

Give me 5 problem solving in Kelvin with solution and answer

Sagot :

Answer:

**Problem 1:**

The temperature of a substance is 25°C. What is the temperature in Kelvin (K)?

**Solution 1:**

To convert Celsius to Kelvin, use the formula:

\[ K = °C + 273.15 \]

Given \( °C = 25 \):

\[ K = 25 + 273.15 = 298.15 \, K \]

**Answer 1:**

The temperature is 298.15 Kelvin.

---

**Problem 2:**

A gas is initially at a temperature of 300 K. If its temperature increases by 50°C, what is the final temperature in Kelvin?

**Solution 2:**

Convert Celsius to Kelvin and then add to the initial Kelvin temperature.

\[ K_f = K_i + \Delta °C \]

\[ K_f = 300 + (50 + 273.15) \]

\[ K_f = 300 + 323.15 \]

\[ K_f = 623.

**Problem 3:**

A sample of gas occupies a volume of 2.50 liters at a temperature of 27°C. If the pressure remains constant, what will be the volume of the gas in Kelvin if the temperature is increased to 300 K?

**Solution 3:**

Convert Celsius to Kelvin for the initial temperature:

\[ T_{initial} = 27°C + 273.15 = 300.15 K \]

Now, using the combined gas law \( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \):

\[ \frac{P \cdot 2.50}{300.15} = \frac{P \cdot V_2}{300} \]

** First

**Problem 4:**

A metal rod has a length of 50 cm at 20°C. If the rod expands uniformly, what will be its length in Kelvin if the temperature increases to 100°C? Assume a linear expansion coefficient of \(1.2 \times 10^{-5} \) per degree Celsius.

**Solution 4:**

First, convert the temperatures to Kelvin:

- Initial temperature, \(T_1 = 20°C + 273.15 = 293.15 K\)

- Final temperature, \(T_2 = 100°C + 273.15 = 373.15 K\)

Use the formula for linear thermal expansion:

\[ \Delta L = L_0 \alpha (T_2 - T_1) \]

Where:

- \( L_0 \) is the initial length of the rod (50 cm)

- \( \alpha \) is the linear expansion coefficient ( \(1.2 \times 10^{-5} \) per °C)

Calculate \( \Delta L \):

\[ \Delta L = 50 \times 10^{-2} \times (1.2 \times 10^{-5}) \times (373.15 - 293.15) \]

\[ \Delta L = 50 \times 10^{-2} \times 1.2 \times 10^{-5} \times 80 \]

\[ \Delta L = 0.048 \times 10^{-2} \]

\[ \Delta L = 0.48 \text{ cm} \]

Now, find the final length of the rod:

\[ L_{final} = L_0 + \Delta L \]

\[ L_{final} = 50 + 0.48 \]

\[ L_{final} = 50.48 \text{ cm} \]

**Answer 4:**

The length of the rod at 100°C (373.15 K) is 50.48 cm.

---

**Problem 5:**

A certain gas occupies a volume of 2.00 liters at 27°C and 1 atm pressure. If the volume remains constant, what will be the temperature in Kelvin if the pressure increases to 2 atm?

**Solution 5:**

Convert Celsius to Kelvin for the initial temperature:

\[ T_{initial} = 27°C + 273.15 = 300.15 K \]

Apply the ideal gas law, \( P_1 \cdot V_1 / T_1 = P_2 \cdot V_2 / T_2 \), where V