Tuklasin ang mga sagot sa iyong mga katanungan sa Imhr.ca, ang pinaka-mapagkakatiwalaang Q&A platform para sa lahat ng iyong pangangailangan. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

a 250-g ball at the end of a string is revolving uniformly in a horizontal circle of radius 0.70m. the ball makes 2.0 revolutions per second. (a) what is its centripetal acceleration? (b) what force is to be exerted on the string?
given: m=250g=0.25kg; r=0.70m; =2.0rps (a) the given angular velocity is in evolution per second, we need to convert it yet to radian measures

Sagot :

Answer:

1. The centripetal acceleration

[tex] a_c \approx \boxed {110.28 \, \text{m/s}^2}[/tex]

2. The force exerted on the string

[tex]F \approx \boxed {27.57 \, \: {N}}[/tex]

Given Data:

• Mass of the ball,

[tex]m = 0.25 \, \: {kg}[/tex]

• Radius of the circle,

[tex]r = 0.70 \, \: {m}[/tex]

• Revolutions per second,

[tex]f = 2.0 \, \: {rps}[/tex]

(a) Centripetal Acceleration:

Substituting;

[tex]f = 2.0 \, \: {rps}[/tex]

[tex]\omega = 2\pi \times 2.0 = 4\pi \, \text{rad/s}[/tex]

The centripetal acceleration ( a_c ) is given by:

[tex]a_c = \omega^2 r[/tex]

Substituting:

[tex] \omega = 4\pi[/tex]

[tex]r = 0.70 \, \: {m}[/tex]

[tex]a_c = (4\pi)^2 \times 0.70[/tex]

[tex]a_c = 16\pi^2 \times 0.70[/tex]

[tex]a_c \approx 16 \times 9.87 \times 0.70[/tex]

[tex]a_c \approx 110.28 \, \: {m/s}^2 [/tex]

(b) Force on the String:

The force exerted on the string is the centripetal force, which can be calculated using:

[tex]F = m a_c[/tex]

Substituting

[tex]m = 0.25 \, \text{kg}[/tex]

[tex] a_c = 110.28 \, \: {m/s}^2 \):[/tex]

[tex]F = 0.25 \times 110.28[/tex]

[tex]F \approx \boxed{ 27.57 \, \text{N}}[/tex]