Makakuha ng mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mabilis at tumpak na Q&A platform. Nagbibigay ang aming Q&A platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.
Sagot :
We are given the equation x^2 + 5x + D = 11 + D. In this equation, A is 1, B is 5 and C is 11. Now, we divide B (which is 5) by 2, square it and multiply with A to get D: (5/2)^2 = 25/4 --> x^2 + 5x + (25/4) = 11 + (25/4) --> Factor the quad. equation: (x - (5/2))(x - (5/2)) = 69/4 --> (x - (5/2))^2 - 69/4 = 0.
[tex]x^2+5x=11 \\\\x^2+5x-11 =0 \\ \\ a=1, \ b=5 , \ \ c=-11\\ \\ x = \frac{-b\pm \sqrt{b^2-4ac}}{2a} \\ \\ x_{1} = \frac{-5 -\sqrt{5^2-4 \cdot 1 \cdot (-11)}}{2 \cdot 1} =\frac{-5-\sqrt{25+44}}{2} =\frac{-5-\sqrt{69}}{2} \approx \frac{-5-8,3}{2} \approx -\frac{13,3}{2} \approx -6,65[/tex]
[tex]x_{2} = \frac{-5+\sqrt{5^2-4 \cdot 1 \cdot (-11)}}{2 \cdot 1} =\frac{-5+\sqrt{25+44}}{2} = \frac{-5+\sqrt{69}}{2} \approx \frac{-5+8,3}{2} \approx \frac {3,3}{2} \approx 1,65[/tex]
[tex]x_{2} = \frac{-5+\sqrt{5^2-4 \cdot 1 \cdot (-11)}}{2 \cdot 1} =\frac{-5+\sqrt{25+44}}{2} = \frac{-5+\sqrt{69}}{2} \approx \frac{-5+8,3}{2} \approx \frac {3,3}{2} \approx 1,65[/tex]
Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Imhr.ca, ang iyong pinagkakatiwalaang tagasagot. Huwag kalimutang bumalik para sa karagdagang impormasyon.