Ang Imhr.ca ay tumutulong sa iyo na makahanap ng mga sagot sa iyong mga katanungan mula sa isang komunidad ng mga eksperto. Kumuha ng agarang at mapagkakatiwalaang sagot sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

Find the slope-intercept form of the equation of the line passing through the points. Sketch the points

1.)  (4,3) (-4,-4)
2.) ( 3/4 , 3,2)  (-4/3 , 7/4)

Sagot :

riza1
[tex]1.) \\ (4,3), \ \ \ (-4,-4)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{-4-3}{-4-4} = \frac{-7}{-8}=\frac{ 7}{ 8} \\ \\ Use \ point \ form \ of \ a \ line\ with \ one \ point:[/tex]

[tex]y-y_{1} =m(x-x _{1}) \\ \\y-3=\frac{7}{8} (x-4)\\\\y=\frac{7}{8}x-\frac{7}{2}+3\\\\y=\frac{7}{8}x-3.5+3\\\\y=\frac{7}{8}x-0.5[/tex]


[tex]2.)\\\\ ( \frac{3}{4} , 3.2)=( \frac{3}{4} , \frac{32}{10})=( \frac{3}{4} , \frac{16}{5}) , \\ (-\frac{4}{3} , \frac{7}{4} )\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} }[/tex]

[tex]m=\frac{ \frac{7}{4}-\frac{16}{5}}{-\frac{4}{3}-\frac{3}{4} } = \frac{ \frac{35}{20}-\frac{64}{20}}{-\frac{16}{12}-\frac{9}{12} } =\frac{-\frac{29}{20}}{-\frac{25}{12}} =(-\frac{29}{20}):(-\frac{25}{12} )=(-\frac{29}{20})*(-\frac{12} {25} )= \frac{87}{125} \\ \\ Use \ point \ form \ of \ a \ line\ with \ one \ point: \\\\ y-y_{1} =m(x-x _{1}) \\ \\y- \frac{16}{5}=\frac{87}{125} (x-\frac{3}{4} )[/tex]

[tex]y- \frac{16}{5}=\frac{87}{125} x-\frac{87}{125} \cdot \frac{3}{4} \\\\ y =\frac{87}{125} x-\frac{261}{500} +\frac{16}{5}\\\\y=\frac{87}{125} x-\frac{261}{500} +\frac{1600}{500}\\\\y=\frac{87}{125} x +\frac{1339}{500}[/tex]
 

View image riza1
View image riza1