Ang Imhr.ca ay ang pinakamahusay na lugar upang makakuha ng maaasahang mga sagot sa lahat ng iyong mga tanong. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform. Nagbibigay ang aming platform ng seamless na karanasan para sa paghahanap ng mapagkakatiwalaang sagot mula sa isang network ng mga bihasang propesyonal.

find the value of k so that the lines whose equations are 3x₊6ky=7 and 9x₊8y=15 are parallel.

Sagot :

to have the lines parallel they must have the same slope.
getting the slope of the second equation you'll have:
9x + 8y = 15
having it the slope-intercept form, y=mx+b where m is the slope you'll have:
8y = 15 - 9x 
y = -9x/8 + 15/8
y = (-9/8)x + 15/8
slope, m=-9/8
from the first equation 
3x + 6ky = 7
6ky = -3x + 7 
y = -3x/6k + 7/6k
the slope is (-3x)/6k
equating the slope of the two equations you'll have:
[tex] \frac{-9}{8} = \frac{3}{6k} [/tex]
cross multiply
-9(6k) = 3(8)
-54k = 24
k = -24/54
k = -4/9