Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa mga pang-araw-araw at masalimuot na katanungan. Itanong ang iyong mga katanungan at makatanggap ng detalyadong sagot mula sa mga propesyonal na may malawak na karanasan sa iba't ibang larangan. Kumonekta sa isang komunidad ng mga eksperto na handang magbigay ng eksaktong solusyon sa iyong mga tanong nang mabilis at eksakto.
Sagot :
Problem 1:
Solution (c):
We carry out two sep-a-rate calculations. First, starting with 36.8 g of Zn, we calculate the number of moles of ZnS that could be produced if all the Zn reacted according to the following conversions
grams of Zn → moles of Zn → moles of ZnS
Combining the conversions in one step, we write
[tex]moles \: of \: ZnS = 36.8 \: g \: Zn \times \frac{1 \: mol \: Zn}{65.378 \: g \: Zn} \times \frac{1 \: mol \: ZnS}{1 \: mol \: Zn}[/tex]
[tex]moles \: of \: ZnS = 0.56288 \: mol \: ZnS[/tex]
Second, for 19.4 g of S, the conversions are
grams of S → moles of S → moles of ZnS
The number of moles of ZnS that could be produced if all the S reacted is
[tex]moles \: of \: ZnS = 19.4 \: g \: S \times \frac{1 \: mol \: S}{32.065 \: g \: S} \times \frac{1 \: mol \: ZnS}{1 \: mol \: S}[/tex]
[tex]moles \: of \: ZnS = 0.60502 \: mol \: ZnS[/tex]
It follows that
Zn must be the limiting reageant because it produces a smaller amount of ZnS.
Solution (a):
The number of moles of ZnS that could be produced if all the S reacted is
[tex]moles \: of \: ZnS = 19.4 \: g \: S \times \frac{1 \: mol \: S}{32.065 \: g \: S} \times \frac{1 \: mol \: ZnS}{1 \: mol \: S}[/tex]
[tex]\blue{moles \: of \: ZnS = 0.605 \: mol \: ZnS}[/tex]
Solution (b):
The mass of ZnS that could be produced if all the Zn reacted is
[tex]mass \: of \: ZnS = 36.8 \: g \: Zn \times \frac{1 \: mol \: Zn}{65.378 \: g \: Zn} \times \frac{1 \: mol \: ZnS}{1 \: mol \: Zn} \times \frac{97.443 \: g \: ZnS}{1 \: mol \: ZnS}[/tex]
[tex]\blue{mass \: of \: ZnS = 54.8 \: g \: ZnS}[/tex]
Solution (d):
Starting with 0.56288 mol of ZnS, we can determine the mass of S that reacted using the mole ratio from the balanced equation and the molar mass of S. The conversion steps are:
moles of ZnS → moles of S → grams of S
so that
[tex]mass \: of \: S \: reacted = 0.56288 \: mol \: ZnS \times \frac{1 \: mol \: S}{1 \: mol \: ZnS} \times \frac{32.065 \: g \: S}{1 \: mol \: S}[/tex]
[tex]mass \: of \: S \: reacted = 18.049 \: g \: S[/tex]
The amount of S remaining (in excess) is the difference between the initial amount (19.4 g) and the amount reacted (18.049 g):
mass of S remaining = 19.4 g - 18.049 g = 1.35 g
Problem 2:
Solution (c):
We carry out two sep-a-rate calculations. First, starting with 126.4 g of NaOH, we calculate the number of moles of NaAlO₂ that could be produced if all the NaOH reacted according to the following conversions
grams of NaOH → moles of NaOH → moles of NaAlO₂
Combining the conversions in one step, we write
[tex]moles \: of \: NaAlO_{2} = 126.4 \: g \: NaOH \times \frac{1 \: mol \: NaOH}{39.9971 \: g \: NaOH} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: NaOH}[/tex]
[tex]moles \: of \: NaAlO_{2} = 3.16023 \: mol \: NaAlO_{2}[/tex]
Second, for 97.70 g of Al, the conversions are
grams of Al → moles of Al → moles of NaAlO₂
The number of moles of NaAlO₂ that could be produced if all the Al reacted is
[tex]moles \: of \: NaAlO_{2} = 97.70 \: g \: Al \times \frac{1 \: mol \: Al}{26.9815 \: g \: Al} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: Al}[/tex]
[tex]moles \: of \: NaAlO_{2} = 3.621 \: mol \: NaAlO_{2}[/tex]
It follows that
NaOH must be the limiting reageant because it produces a smaller amount of NaAlO₂.
Solution (a):
The number of moles of NaAlO₂ that could be produced if all the NaOH reacted is
[tex]moles \: of \: NaAlO_{2} = 126.4 \: g \: NaOH \times \frac{1 \: mol \: NaOH}{39.9971 \: g \: NaOH} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: NaOH}[/tex]
[tex]\blue{moles \: of \: NaAlO_{2} = 3.160 \: mol \: NaAlO_{2}}[/tex]
Solution (b):
The mass of NaAlO₂ that could be produced if all the NaOH reacted is
[tex]mass \: of \: NaAlO_{2} = 126.4 \: g \: NaOH \times \frac{1 \: mol \: NaOH}{39.9971 \: g \: NaOH} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: NaOH} \times \frac{81.9701 \: g \: NaAlO_{2}}{1 \: mol \: NaAlO_{2}}[/tex]
[tex]\blue{mass \: of \: NaAlO_{2} = 259.0 \: g \: NaAlO_{2}}[/tex]
Solution (d):
Starting with 3.16023 mol of NaAlO₂, we can determine the mass of Al that reacted using the mole ratio from the balanced equation and the molar mass of Al. The conversion steps are:
moles of NaAlO₂ → moles of Al → grams of Al
so that
[tex]mass \: of \: Al \: reacted = 3.16023 \: mol \: NaAlO_{2} \times \frac{2 \: mol \: Al}{2 \: mol \: NaAlO_{2}} \times \frac{26.9815 \: g \: Al}{1 \: mol \: Al}[/tex]
[tex]mass \: of \: Al \: reacted = 85.27 \: g \: Al[/tex]
The amount of Al remaining (in excess) is the difference between the initial amount (97.70 g) and the amount reacted (85.27 g):
mass of Al remaining = 97.70 g - 85.27 g = 12.43 g
#CarryOnLearning
Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Ang iyong mga katanungan ay mahalaga sa amin. Balik-balikan ang Imhr.ca para sa higit pang mga sagot.