Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na dedikado sa pagbibigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

y = x² - 4x + 7 into vertex form by using the derived formula for h and k

Sagot :

Standard and Vertex Form of the Equation of a Parabola

The standard form of the equation of a parabola is:

y=Ax2+Bx+Cy=Ax2+Bx+C

while in vertex form, the equation of a parabola is:

y=p(x−h)2+ky=p(x−h)2+k

whereas:

pp = distance of vertex to focus

hh = x-coordinate of the vertex

kk = y-coordinate of the vertex

Answer and Explanation: 1

From the standard form, y=x2+4x−7y=x2+4x−7.

We transform it to vertex form to determine the hh and kk by completing the square.

First, we transpose 77 in the left side of the equation.

y+7=x2+4xy+7=x2+4x

Next, we add 44 to transform it into a perfect square.

y+7+4=x2+4x+4y+7+4=x2+4x+4

y+11=(x+2)2y+11=(x+2)2

Transposing again the 1111 to the other side of the equation into the form of vertex form, y=p(x−h)2+ky=p(x−h)2+k

y=(x+2)2−11y=(x+2)2−11

So, from its vertex form we can say that h=−2h=−2 and k=−11k=−11.

Therefore, the vertex of the parabola with equation y=x2+4x−7y=x2+4x−7 is at (−2,−11)(−2,−11).