Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto. Tuklasin ang isang kayamanan ng kaalaman mula sa mga propesyonal sa iba't ibang disiplina sa aming komprehensibong platform. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

All of the following are examples of cells ,except

Sagot :

Answer:

Cells fall into one of two broad categories: prokaryotic and eukaryotic. The single-celled organisms of the domains Bacteria and Archaea are classified as prokaryotes (pro = before; karyon– = nucleus). Animal cells, plant cells, fungi, and protists are eukaryotes (eu = true).

Components of Prokaryotic Cells

All cells share four common components: (1) a plasma membrane, an outer covering that separates the cell’s interior from its surrounding environment; (2) cytoplasm, consisting of a jelly-like region within the cell in which other cellular components are found; (3) DNA, the genetic material of the cell; and (4) ribosomes, particles that synthesize proteins. However, prokaryotes differ from eukaryotic cells in several ways.

In this illustration, the prokaryotic cell has an oval shape. The circular chromosome is concentrated in a region called the nucleoid. The fluid inside the cell is called the cytoplasm. Ribosomes, depicted as small circles, float in the cytoplasm. The cytoplasm is encased by a plasma membrane, which in turn is encased by a cell wall. A capsule surrounds the cell wall. The bacterium depicted has a flagellum protruding from one narrow end. Pili are small protrusions that project from the capsule in all directions.

Figure 1. This figure shows the generalized structure of a prokaryotic cell.

A prokaryotic cell is a simple, single-celled (unicellular) organism that lacks a nucleus, or any other membrane-bound organelle. We will shortly come to see that this is significantly different in eukaryotes. Prokaryotic DNA is found in the central part of the cell: a darkened region called the nucleoid (Figure 1).

Unlike Archaea and eukaryotes, bacteria have a cell wall made of peptidoglycan, comprised of sugars and amino acids, and many have a polysaccharide capsule (Figure 1). The cell wall acts as an extra layer of protection, helps the cell maintain its shape, and prevents dehydration. The capsule enables the cell to attach to surfaces in its environment. Some prokaryotes have flagella, pili, or fimbriae. Flagella are used for locomotion, while most pili are used to exchange genetic material during a type of reproduction called conjugation.

Eukaryotic Cells

In nature, the relationship between form and function is apparent at all levels, including the level of the cell, and this will become clear as we explore eukaryotic cells. The principle “form follows function” is found in many contexts. It means that, in general, one can deduce the function of a structure by looking at its form, because the two are matched. For example, birds and fish have streamlined bodies that allow them to move quickly through the medium in which they live, be it air or water.

A eukaryotic cell is a cell that has a membrane-bound nucleus and other membrane-bound compartments or sacs, called organelles, which have specialized functions. The word eukaryotic means “true kernel” or “true nucleus,” alluding to the presence of the membrane-bound nucleus in these cells. The word “organelle” means “little organ,” and, as we learned earlier, organelles have specialized cellular functions, just as the organs of your body have specialized functions.

Cell Size

At 0.1–5.0 µm in diameter, prokaryotic cells are significantly smaller than eukaryotic cells, which have diameters ranging from 10–100 µm (Figure 2). The small size of prokaryotes allows ions and organic molecules that enter them to quickly spread to other parts of the cell. Similarly, any wastes produced within a prokaryotic cell can quickly move out. However, larger eukaryotic cells have evolved different structural adaptations to enhance cellular transport. Indeed, the large size of these cells would not be possible without these adaptations. In general, cell size is limited because volume increases much more quickly than does cell surface area. As a cell becomes larger, it becomes more and more difficult for the cell to acquire sufficient materials to support the processes inside the cell, because the relative size of the surface area across which materials must be transported declines.

Part a: Relative sizes on a logarithmic scale, from 0.1 nm to 1 m, are shown. Objects are shown from smallest to largest. The smallest object shown, an atom, is about 1 nm in size. The next largest objects shown are lipids and proteins; these molecules are between 1 and 10 nm. Bacteria are about 100 nm, and mitochondria are about 1 greek mu m. Plant and animal cells are both between 10 and 100 greek mu m. A human egg is between 100 greek mu m and 1 mm. A frog egg is about 1 mm, A chicken egg and an ostrich egg are both between 10 and 100 mm, but a chicken egg is larger. For comparison, a human is approximately 1 m tall.

Figure 2. This figure shows the relative sizes of different kinds of cells and cellular components. An adult human is shown for comparison.

Explanation:

Hope Can Help Ya

Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Salamat sa paggamit ng aming serbisyo. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Ipinagmamalaki naming sagutin ang iyong mga katanungan dito sa Imhr.ca. Huwag kalimutang bumalik para sa karagdagang kaalaman.